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An exact kinetic theory is formulated for lattice gases. This kinetic theory makes possible the calcula-
tion of corrections to the usual combined Boltzmann and Chapman-Enskog analysis of lattice gases due
to the buildup of correlations. Cluster expansion methods are used to show that renormalized transport
coefficients for lattice gases satisfying semidetailed balance can be calculated perturbatively by summing
terms in an infinite series. A diagrammatic notation for the terms in this series is given, in analogy with
the diagrammatic expansions of continuum kinetic theory and quantum field theory. A closed-form ex-
pression for the coefficients associated with the vertices of these diagrams is given. This method is ap-
plied to several standard lattice gases, and the results are shown to correctly predict observed deviations

from the Boltzmann analysis.
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I. INTRODUCTION

Lattice gases are a class of dynamical systems in which
particles move on a lattice in discrete time steps. In
much the same way that the Ising model and other simi-
lar lattice spin models provide simple examples of equilib-
rium statistical mechanical systems, lattice gases capture
many features of nonequilibrium statistical mechanical
systems such as fluids.

Most work on lattice gases has been done in a frame-
work where the Boltzmann assumption is made, neglect-
ing all correlations between the particles moving on the
lattice. In this paper we give a complete description of a
theory of lattice gases in which the effects of all correla-
tions are included. For a wide variety of lattice gases, the
effect of these correlations is only to correct or renormal-
ize the hydrodynamic transport coefficients, and we show
how to compute this correction. For some lattice gases,
the resulting renormalization can change parameters in
the theory by substantial amounts, so that in any situa-
tion where lattice gases are used to make precise quanti-
tative predictions, the effects of correlations should be
considered and the magnitude of the resulting correction
to the usual analysis should be estimated.

A. Background

In 1986, it was shown [1] that lattice gases could be
used to simulate two-dimensional Navier-Stokes flow.
Since then, lattice gases have been developed to describe
a wide variety of physical systems. Examples are three-

dimensional Navier-Stokes flow [2], magnetohydro-
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dynamics [3], immiscible fluids with a surface tension in-
terface [4,5], convection [6], two-phase liquid-gas flow
[7], Burgers’s equation [8], and reaction-diffusion equa-
tions [9]. For a summary of recent works on the subject,
see the proceedings edited by Doolen [10,11], by Monaco
[12], by Manneville et al. [13], by Alves [14], and by
Boon and Lebowitz [15].

Why should we expect the bulk behavior of particles
moving and colliding on a lattice to be that of a fluid? In
nature, we observe that many different fluids, with drasti-
cally differing intermolecular force laws, satisfy the
Navier-Stokes equations to a reasonable degree of ap-
proximation. In spite of all the differences between the
intermolecular collisions of, say, water and molasses,
both types of collisions conserve mass and momentum;
ultimately the existence of these conserved quantities
gives rise to fluidlike behavior at the macroscopic level.
(Conservation of mass and momentum is sufficient to get
the correct behavior in the incompressible regime. To get
correct compressible behavior, it is necessary to conserve
energy as well.) A lattice-gas model can be thought of as
an attempt to find the simplest possible dynamical system
with these conservation laws.

The idea that macroscopic properties of a physical sys-
tem should be independent of the microscopic definition
of the system is also a familiar concept in equilibrium sta-
tistical mechanics and in quantum field theory. In such
theories, the effect of looking at the physics of the system
at larger and larger scales is mathematically described by
the renormalization group flow of the system [16]. Gen-
erally, as the scale of the physics of interest becomes ex-
tremely large compared to the scale at which the system
is defined, one finds that the renormalization-group flow
takes the system towards certain fixed points, which de-
scribe entire universality classes of theories with identical
macroscopic behavior. The emergence of similar hydro-
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dynamic equations in a variety of systems with different
microscopic dynamics is an equivalent phenomenon in
nonequilibrium statistical mechanics.

Of course, there are some properties of fluids in which
the details of the microscopic collisions manifest them-
selves at the macroscopic level. The most obvious such
properties are the transport coefficients. While water and
molasses both satisfy the Navier-Stokes equations, they
do so with very different viscosities. Long-time tails in
velocity autocorrelation functions are also well known to
be sensitive to the microscopic dynamics.

The central problem in the theoretical analysis of a lat-
tice gas is thus the determination of the macroscopic hy-
drodynamic equations obeyed by the conserved quantities
of the system, with the transport coefficients expressed as
functions of those conserved quantities. This is the clas-
sical problem of kinetic theory. The methods needed to
perform this analysis for continuum fluids have been well
developed over the past century [17]. Two key approxi-
mations are used in the course of such analyses.

(i) The Boltzmann molecular chaos approximation (or
Stosszahlansatz) neglects correlations between molecules
entering a collision. This makes it possible to obtain a
single closed equation, called the Boltzmann equation, for
the single-particle distribution function.

(ii) The Chapman-Enskog analysis is an asymptotic ex-
pansion in Knudsen number that yields closed hydro-
dynamic equations for the conserved quantities. (The
Knudsen number is the ratio of mean free path to the
macroscopic scale length.)

During the 1960s and 1970s, much work centered on
the removal of the first of these two approximations for
continuum fluids [18,19] and for Lorentz gases [20]. It
was found that the buildup of correlations between the
molecules of a fluid could seriously alter, or renormalize,
the transport coefficients predicted by the Boltzmann
theory. Expressions for these corrections were derived in
terms of diagrammatic sums. The propagators in these
diagrams can be thought of as propagating correlated
quantities; the vertices describe collisions in which corre-
lated quantities interact. Thus an event in which two
particles emerge from a collision (and thereby acquire a
correlation), move about in a background of uncorrelated
particles, and later recollide, can be thought of as a one-
loop correction to the Boltzmann approximation. Fur-
ther refinements can be obtained by including more intri-
cate diagrams—with multiple loops, nested loops, etc.—
to account for the interaction of the correlated quantities
with the background. Standard field-theoretic techniques
can then be used to approximate these diagrammatic
sums.

As part of the recent flurry of interest in lattice gases,
much of classical kinetic theory has been extended to lat-
tice gases. In particular, the derivation of Boltzmann
equations for lattice gases and the application of the
Chapman-Enskog theory has been well understood for
several years now thanks to the works of a number of au-
thors [21,2]. While these works have generally capital-
ized on the similarities between lattice gases and continu-
um fluids, they have also pointed to some very important
differences between the two.

The most important of these differences has to do with
the assumptions leading up to the derivation of the
Boltzmann equation. Though the assumption of molecu-
lar chaos is made in either case, the analysis of continu-
um fluids generally proceeds under the additional as-
sumption that the fluid is dilute, that is, that collisions in-
volving more than two molecules can be ignored. For
lattice gases, on the other hand, it is essential that terti-
ary and higher collision events be treated properly. For
example, tertiary collisions are essential to the success of
the Frisch-Hasslacher-Pomeau (FHP-I) lattice gas be-
cause they break an unphysical (spurious) conserved
quantity [1]. In addition, the inclusion of higher-order
collision events has been shown to decrease the viscosity
of fluid lattice gases, thereby making possible higher Rey-
nolds number simulations [21].

Thus collision operators for lattice gases routinely in-
clude terms for tertiary and higher-order collisions.
While this is really only a minor nuisance in the
Boltzmann and Chapman-Enskog analyses, it introduces
a significant complication to the exact kinetic theory.
The kinetic theory of dilute fluids needs to consider only
those vertices for which two or fewer correlated quanti-
ties enter and exit. Lattice-gas kinetic theory, on the oth-
er hand, must additionally treat vertices involving three
or more entering and/or exiting correlated quantities.
The number of correlated quantities that can enter
and/or exit a vertex is limited only by the number of lat-
tice vectors at a site. This gives rise to a much richer di-
agrammatic series than is the case for a dilute continuum
fluid.

Another difference between continuum fluids and lat-
tice gases, which gives the kinetic theories for these types
of systems very different flavors, is the simple fact that
continuum fluids are defined on continuous spaces while
lattice gases are defined on discrete spaces. The conse-
quence of this difference is that while corrections due to
correlations in continuum fluids are expressed in terms of
complicated integral expressions, the corrections in lat-
tice gases are given by combinatorial sums over countable
sets of graphs. Thus the problem of calculating exact
transport coefficients in a lattice gas becomes essentially a
combinatorial, rather than an analytic, problem.

For some lattice gases the corrections to the transport
coefficients arise from diagrams that extend spatially and
temporally over only a short distance on the lattice, i.e., a
distance that goes to zero in the scaling limit. The result-
ing rapid convergence of the formulas for transport
coefficients makes these lattice-gas systems extremely at-
tractive both as models with which to study complicated
properties of related physical systems in the continuum
and as pedagogical tools with which to describe the
essential features of a complete kinetic theory without the
complications associated with continuum systems.

B. Results presented in this paper

In this paper, we give a complete formulation of an ex-
act kinetic theory of lattice gases. We prove that for a
wide class of lattice gases, the effects of correlations can
be completely described by a renormalization of the
transport coefficients. Furthermore, we give explicit for-
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mulas for the renormalized transport coefficients in terms
of a sum over an infinite set of diagrams. We describe the
renormalization calculation in detail for several specific
lattice gases and discuss a variety of methods for approxi-
mating the complete diagrammatic sum.

We begin with a review of the Boltzmann and
Chapman-Enskog theories. We derive formulas for the
hydrodynamic equations of a general class of lattice
gases. We then apply this general formalism to four ex-
ample lattice gases, three of which are familiar from the
literature; for these three the Chapman-Enskog analysis
has been previously carried out using more specific
methods. Our intent in this part of the paper is to de-
scribe the general formalism in a concise fashion and to
illustrate its application to simple model problems, there-
by providing a context for our subsequent development of
the diagrammatic renormalization theory. Our presenta-
tion of the combined Boltzmann-—Chapman-Enskog
analysis contains the following features and results.

(i) The formulas we derive for the hydrodynamic equa-
tions and the transport coefficients of semidetailed bal-
ance (SDB) lattice gases have, to our knowledge, never
before been written down in this generality.

(ii) Our results are presented in a mathematical frame-
work that is interesting in its own right. We introduce a
family of metrics on the space of local Gibbsian equilibria
and show that the transport coefficients can be expressed
quite naturally in terms of these metrics and their associ-
ated Christoffel symbols.

(iii) For the special case of lattice fluids on a regular
lattice with single-speed particles, we derive an expres-
sion for the viscosity that agrees with that of Hénon and
yields an alternative and compact form for the quantity
that he calls A in his paper on the subject [22].

Next we present the exact kinetic theory for lattice
gases. We introduce the general theory with a specific ex-
ample of how correlations renormalize transport
coefficients. The main features of the general theory are
as follows.

(i) We give a simple expression for the renormalized
transport coefficients of any lattice gas obeying SDB at
lowest order in the Chapman-Enskog expansion parame-
ter. The transport coefficients are given in terms of a sum
over an infinite set of terms, each associated with a dia-
gram describing the propagation and interaction of a set
of correlations.

(ii) We show that the correction associated with each
diagram can be decomposed into a product of elementary
factors associated with the vertices in the diagram; these
factors describe the interactions of correlated quantities
at a single lattice site. Furthermore, we give a closed-
form expression for these vertex coefficients.

(iii) In this paper we analyze lattice gases that either
obey semidetailed balance or violate it at subleading or-
der in the expansion parameter €; we always assume that
the equilibrium is at most O(e) away from a Gibbsian
distribution. We show that when a lattice gas violates
semidetailed balance at higher order in the expansion pa-
rameter, the effects of correlations can give rise to renor-
malized source terms in the hydrodynamic equations in
addition to the usual renormalization of transport

coefficients. We describe these renormalized source
terms in terms of the same types of diagrams used to de-
scribe the renormalized transport coefficients.

(iv) We formulate the theory in terms of connected
correlation functions. A similar expansion in terms of
products of fluctuations was previously used to derive the
ring kinetic theory for lattice gases [23,24] and for lattice
Lorentz gases [25]. The use of the connected correlation
functions significantly simplifies the complete diagram-
matic expansion for the kinetic theory.

(v) We describe a variety of approximations that can be
made to simplify the numerical computation of the renor-
malized transport coefficients. The simplest of these ap-
proximations is the ring approximation, in which correla-
tions between more than two particles are neglected.
Thus we find that the ring approximation results [23] are
described in our theory by restricting the diagrammatic
sum to the simple set of ring diagrams.

(vi) Most previous work on the kinetic ring theory of
lattice gases has used the Green-Kubo formalism to ob-
tain the series for the transport coefficients. In this pa-
per, we use the Chapman-Enskog theory instead. In this
way, we get the Boltzmann approximation at zeroth or-
der. All higher-order terms in our series are thus correc-
tions to the Boltzmann approximation. In the Green-
Kubo theory, by contrast, it is necessary to sum an
infinite number of terms (albeit simply a geometric series)
just to get the Boltzmann approximation.

(vii)) We work out the diagrammatic expansion in detail
for four model lattice gases and we compare some of
these results to lattice-gas simulations.

(viii) For one of these model problems—a lattice gas
for Burgers’s equation [8]—we use the diagrammatic for-
malism to show that the Boltzmann approximation is ex-
act. This result has been previously obtained by other
means [26]; we show that the methods introduced here
significantly simplify this proof.

C. Organization of this paper

Section II begins with a review of lattice-gas theory
and establishes notation that is used throughout the rest
of the paper. Section III then reviews the Boltzmann and
Chapman-Enskog analyses and introduces a mathemati-
cal formalism with which the results for the transport
coefficients can be expressed in a simple form. Section IV
contains examples in which we work out the details of
this formalism for four model lattice gases.

Section V gives an example of how correlations correct
the lattice-gas equations of motion. The simple calcula-
tion contained in this section serves as an introduction to
the more abstract approach of Sec. VI in which we for-
mulate the complete lattice gas kinetic theory, prove that
the exact transport coefficients are expressible as the sum
of a diagrammatic series, and give a closed-form expres-
sion for the vertex coefficients. Section VII contains de-
tailed calculations of the vertex coefficients for the four
model lattice gases described in Sec. IV and presents the
results for the transport coefficients of these lattice gases
as formal diagrammatic series. For the Burgers equation
lattice gas we show that the diagrammatic series of
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corrections to the Boltzmann approximation vanishes, in
agreement with previous work [26].

Since, with the exception of the Burgers equation ex-
ample, these diagrammatic series are difficult to sum
without resorting to numerical methods, Sec. VI includes
a discussion of approximation schemes, including sum-
mations for short times, summations over one-loop dia-
grams (ring approximation), and summations over subsets
of diagrams that correspond to truncations of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy. In Sec. VIII we apply several of these approx-
imation schemes to one of the model problems (the 1D3P
lattice gas) and we present comparisons to computer ex-
periment showing that our theory correctly predicts ob-
served deviations from the Boltzmann theory to within
measurable accuracy. In this section, we also develop
further approximation techniques valid for general lattice
gases.

II. REVIEW OF LATTICE-GAS THEORY

A. Definitions and notation

A lattice gas is generally described by a state space and
a time-development rule. The state space is defined by as-
sociating n bits with each point on a lattice L. (Bits are
variables taking values in {0,1}.) We define the set of bits
at a general lattice site to be B, so that |B|=n. We
denote the total number of bits on the lattice by
N=n|L|. For each value of the discrete time parameter
t, we write the values of the bits as n(x,t), where xEL
and i €EB. As noted in Sec. I, these bits can be thought of
as a set of occupation numbers for individual particle
states.

We define the set S of possible states of the bits at a
general lattice point at a fixed value of ¢ to be

S={s:sCB},

where a state s is associated with the set of bits taking the
value 1. We write the value of bit i in state s as
P 1 ifi€s
5= ]lo otherwise .
Note that |S|=2".

We shall often want to refer to the N=n|L| bits of the
lattice in a uniform fashion, so we introduce an enumera-
tion of these N bits, given by a one-to-one correspondence
between the sets B={1,2,...,N} and BXL={(i,x):
i€B, x€L}. In this notation, a single bit of the lattice
gas is written as n% a €3B. To relate this notation to the
more explicit (i,x) notation, we express the above one-
to-one correspondence by writing a and (i,x) as functions
of one another, so that

nt)=n""9(x(a),t)
and
ni(x’t)=na(i,x)(t) .

We shall use both notations interchangeably throughout
this paper.

B. Microscopic dynamical equation

For each value of i€{1,...,n} there is a lattice vec-
tor ¢/ such that x+c ‘€L for every x€L. The evolution
of a lattice gas for one time step can be divided into two
substeps: (i) a collision substep in which the » bits at each
site may alter their values to model a local interaction be-
tween the particles that they represent and (ii) a propaga-
tion substep in which the new value of bit i at site x
moves to that of bit i at site x+c .

‘We desire an equation for n(x,t+At) in terms of
n'(x,t), where At denotes the time step. Suppose, for a
moment, that the particles simply propagated without
colliding. Then the dynamics would be described by

nix+cit+Ar)=nix,t) .

The addition of collisions introduces a collision operator
on the right-hand side of the above equation. That is, we
have

ni(x+cit+At)=ni(x,1)+w'(n*(x,t)) , (1)

where the collision operator ' describes the change in bit
i due to collisions. Note that the form f(z*) is used to
indicate dependency of a function f on a quantity z‘ for
all possible values of the index (in this case i) that has
been replaced by the asterisk. For instance, o'(n*(x,t))
is shorthand for w'(n (x,2),n%(x,t), .. ., n"(x,t)).

C. Collision operator

The collision process at a fixed lattice site and time step
can be fully specified by a 2" X 2" Boolean transition ma-
trix a, whose element a(s—s’) is unity if and only if the
particles in state s collide to yield particles in state s’.
Since each incoming state gives rise to exactly one outgo-
ing state,

Sals—s')=1. )

Stochastic lattice gases deserve special mention at this
point. They also have a(s—s') equal to unity for exactly
one value of s’ for each value of s, but that value of s’
may differ from site to site and from time step to time
step for a fixed value of 5. For example, we might have
a(s—s;)=r, a(s—s,)=1—r, and a(s—s')=0 for
s'#s,,S,, where r is a random bit that is sampled at each
site at each time step with some specified mean R =(r ).
This would effectively mean that the outcome of a col-
lision for incoming state s is state s; with probability R
and state s, with probability 1—R. Note that Eq. (2) is
still always satisfied.

If we define the Kronecker delta function of two bits

1 ifx=y
8(x,y)= 0 otherwise
=l—-x—y+2xy, (3)

then the product

IT 8(n’,s’)

j=
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is unity at a given site if and only if that site is in state s.
Since the collision operator o' is nothing more than the
total change in bit i due to collision, it can be expressed
in terms of the transition matrix as

wi(n*)=2a(s—>s’)(s’i—s[)ﬁ 8(nt,st) . 4)

s,s’ j=1

D. Conserved quantities

Another distinguishing feature of lattice gases is the
presence of some number of additive conserved quantities
that are linear in the bit values. For example, in some
lattice gases, the total number of particles is a conserved
quantity; it is clearly conserved by the propagation phase
of the time step and we can choose collision rules that
conserve particle number as well.

Let us assume that we have a lattice gas with n, of con-
served quantities. We assume that all conserved quanti-
ties are linear in the configuration bit values, so we can
write the value of the pth conserved quantity at site x and
at time ¢ in the form

gH(x,t)=gtn'(x,t) for u=1,...,n., (5)
where the coefficients g} satisfy
0=gqtw'(n*) for u=1,...,n, . (6)

It is important to note that the g¢f are constant
coefficients, independent of spatial position. Throughout
this paper we adopt the modified Einstein summation
convention that if the same index appears in at least one
contravariant position and at least one covariant position
in every term where it appears at all (on either side of the
equation), then it is to be summed over its entire range of
values. Sometimes summations are indicated explicitly,
particularly when the range of summation is not clear
from the context.
From Eq. (6) it follows that

> gt (x,t +At)= gfn (x+cit+At)
=3 q{‘[ni(x,t)-i—a)i(n*)]:z qH(x,t),

so that the global sum of any conserved quantity is con-
stant in time.

Note that the conserved quantities naturally partition
the set S into equivalence classes. Two states belong to
the same equivalence class if they have the same values of
all the conserved quantities (that is, s ~s’ if and only if

Fs'i=gbs" for u=1,...,n.). Collisions must map
states into other states of the same equivalence class.
This means that the transition matrix a(s—s’) is block
diagonal, in that a(s —s’)=0if s #s’'. More succinctly,

als—s')gls' '—qts’)=0 . (7

Note that Eq. (6) follows immediately from Egs. (4) and
.

We observe in passing that some lattice gases also pos-
sess spurious global conserved quantities. For example, it
is easily seen that lattice gases of single-speed particles on
a Cartesian grid conserve all quantities separately on

both checkerboard sublattices. Such spurious global con-
served quantities have no analog for continuum fluids and
need to be considered carefully when using lattice gases
to model hydrodynamic phenomena [27-29].

E. Ensemble average

We now consider some statistical aspects of lattice-gas
theory. Let us suppose that we have prepared an ensem-
ble of lattice-gas simulations on grids of the same size,
with initial conditions that are sampled from some distri-
bution. We denote averages across this ensemble by angu-
lar brackets. We define

Nix,t)=(ni(x,t)) .

Note that while the n”s are binary, the N”s take their
values in the set of real numbers between zero and one.
Similarly, we can consider ensemble-averaged values of
the conserved quantities

OH(x,t)={(qM(x,t)) =qINix,t)
for u=1,...,n.. (8)
Next, the ensemble average of a(s —s') is defined to be
A(s—s')={(a(s—s")),
so that the ensemble average of Eq. (2) is

> A(s—s')=1. 9)

For deterministic lattice gases, A(s—s')=a(s—s’),
whereas for stochastic lattice gases, the elements of
A (s —s') are generally real numbers between O and 1.
Note that we now have three possible levels of descrip-
tion of the lattice-gas system. At the finest level, the
specification of the n'(x,t) constitutes a complete micro-
scopic description of the system. Their time evolution
can generally be obtained only by an actual simulation of
the lattice gas. Often, however, precise knowledge of
each and every bit of the system is more information than
one really desires. A coarser description, such as a closed
set of kinetic equations for the ensemble-averaged N(x,?)
is often a more appropriate description of the system.
Even this level of description, however, is redundant for
many purposes. Therefore, at the coarsest level, one
might seek a closed set of Aydrodynamic equations for the
QF. The remainder of this paper will be concerned with
deriving these two reduced descriptions of the system.

F. Boltzmann equation

Toward the goal of obtaining a closed set of equations
for the N’, we take the ensemble average of Eq. (1). We
are immediately thwarted by the fact that the collision
operator, given by Eq. (4), is generally a nonlinear func-
tion of the n’. The average of a nonlinear function is not
in general expressible as a function of the averaged quan-
tities. It also depends on the correlations between the
quantities—in this case between the incoming bits n".

Thus the simplest approximation that we can make to
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close the system of equations for the N' is to assume that
the incoming bits n’ are uncorrelated. This is the discrete
version of the famous Boltzmann molecular chaos as-
sumption. From this assumption, it would follow that

(o(n*))=Q({n*))=Q(N*),
where, using Eqs. (3) and (4), Q/(N*) is given by

QN*)=T A(s—s")s"'—=s [ (1—s/—N’/+2s/N/)

s,s' ji=1

=3 A(s—ss i—s) [T (V) (1—N)'

5,5’ j=1
(10)

In this way, we get the lattice Boltzmann equation
Nix+c't +At)=N'(x,t)+Q(N*(x,1)) . (11

Physically speaking, the assumption of molecular
chaos supposes that the propagation substep effectively
decorrelates the different bits at each site. (For stochastic
lattice gases, such decorrelation is enhanced by the injec-
tion of stochasticity at each site at each time step.) That
is, it supposes that colliding particles have never had any
prior effect on each other. This assumption is virtually
never strictly correct for a system of particles moving on
a discrete lattice in a finite number of dimensions. By
standard combinatorial arguments, the reencounter prob-
ability for two particles executing a random walk on a
lattice is unity in one and two dimensions, is less than
unity in three or more dimensions, and falls to zero as the
number of dimensions goes to infinity. Though lattice-
gas particles do not execute random walks, one might
still expect on these heuristic grounds that the molecular
chaos assumption becomes more valid as the number of
spatial dimensions increases. Indeed, this is the case and
the molecular chaos assumption can be thought of as a
sort of mean-field theory. In some circumstances, it is
possible for particles to set up coherent structures that
persist for long times. Such structures, by their very na-
ture, invalidate the molecular chaos assumption in a rath-
er dramatic way.

The remainder of this paper is devoted to deriving the
desired closed set of hydrodynamic equations for the Q.
We shall go about this task in two stages. First, in Sec.
III, we shall show how they can be derived under the
molecular chaos assumption. In Sec. VI, however, we
abandon this assumption and find that this has the effect
of correcting, or renormalizing, the transport coefficients
in the resulting hydrodynamic equations. For a large
class of lattice gases of interest—those satisfying a condi-
tion known as semidetailed balance at lowest order—we
shall show that it is possible to write an exact expression
for this correction as a diagrammatic series.

III. CHAPMAN-ENSKOG ANALYSIS

A. Asymptotic ordering

We shall now outline a perturbative analysis of the
Boltzmann equation (11). With this analysis, we study

the hydrodynamics of systems that deviate slightly from
local equilibrium conditions. To do this, we must first es-
tablish the asymptotic regime that we are trying to study.
In this paper we use a scaling limit that is sometimes
called diffusion ordering or Navier-Stokes ordering. This
ordering can be obtained formally by letting c—ec and
At —€?At in the dynamical equations, where € is an ex-
pansion parameter. Thus we are taking At ~c?, as is ap-
propriate for diffusive or viscous processes.

Because the N/ are real numbers (as opposed to the n ‘
which are bits), we are free to approximate them by
smooth functions that happen to coincide with them in
value on the lattice points. We can then Taylor expand
Eq. (11), retaining terms to order €2. Dividing out At, we
get

AN cl . clet .
2 UL¥Y R A N 2 2 Y ard
&S eV | N ‘-i-e vV SN
=L oine)+-£ Q"(N*)+—629"(N*> (12)
IR Al At ? ’

where the double-dot notation denotes two inner prod-
ucts. (This notation will be used only when no ambiguity
can arise from it, as is the case when at least one of the
two dyads involved is symmetric.) Note that we have or-
dered the ensemble-averaged collision operator in the ex-
pansion parameter €. This is useful for lattice gases with
collision rules that depend upon the lattice size; for exam-
ple, the collision rule for the Burgers equation lattice gas,
which we shall describe later in this paper, has a direc-
tional bias that is proportional to € in the scaling limit.
In what follows, we shall assume that Q) and Q! respect
the conservation laws exactly, but that Q) does not neces-
sarily do so. This will allow us to consider lattice gases
whose conservation laws are only approximate.

Contracting Eq. (12) with the constant g¥, we get the
n, conservation equations

lols cl clic!
+V- v = Nt . @ i
€ ar \% qf AtN +€eV- g 2AtN l
=-SgrQiN*), (13)
Ar™
where u=1,...,n.. We can now clearly identify the

quantity in square brackets as the flux corresponding to
the conserved density Q" and the right-hand side as a
source or sink term.

In what follows, we shall expand the N' in a perturba-
tion series in powers of € about an equilibrium state,

Ni=Ni+eNi+eNi+ - . (14)

Here N} is a local thermodynamic equilibrium. In the
next subsection, we shall characterize these equilibria.
Then we shall derive hydrodynamic equations for the sys-
tem by considering its near-equilibrium behavior.

B. Semidetailed balance and equilibria

An equilibrium distribution for a given lattice gas is a
distribution on the state space of the system that is in-
variant under the full dynamics. A Boltzmann equilibri-
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um is a set of values for the mean occupation numbers
N¢ which is invariant under the Boltzmann equation
(11). A Boltzmann equilibrium can be associated with a
distribution on the set of states by independently sam-
pling each bit n? with probability N°. If the resulting dis-
tribution is an equilibrium in the more general sense, then
we refer to this distribution as a Gibbsian equilibrium.
Thus, in a Gibbsian equilibrium the full dynamics of the
system, given by Eq. (1), do not generate correlations be-
tween the n° If a Boltzmann equilibrium is spatially uni-
form, it can be specified by a set of values for the n mean
occupation numbers N’ the associated distribution on
the set of states is given by independently sampling each
bit n ¢ with probability N (?.

We wish to study the dynamics of the system in the vi-
cinity of a local Boltzmann equilibrium. Inserting Eq.
(14) into Eq. (12), we have at lowest order in €

QiNE(x,t))=0, (15)

which is the condition that the N are a Boltzmann equi-
librium at O(1). We also demand that the N be a
Gibbsian equilibrium at this order. However, we shall al-
low the Ni(x,t) to have spatial dependence. In this pa-
per, we shall restrict our attention to lattice gases for
which equilibria with these properties exist. Fortunately,
this restriction can be formulated in terms of a simple
sufficient condition on the lowest-order part of the transi-
tion matrix [2]. To state this condition, we first introduce
a definition.

Definition 1. A lattice gas is said to obey detailed bal-
ance if its transition matrix satisfies

A(s—s")= A(s"—s) (16)

and it is said to obey semidetailed balance if its transition
matrix satisfies

S A(s—s')=1. 17

Note that semidetailed balance is a weaker condition
than detailed balance, because Eqgs. (16) and (9) together
imply Eq. (17). Semidetailed balance (coupled with prob-
ability conservation) requires that the rows and columns
of the transition matrix all sum to unity. Detailed bal-
ance additionally requires that it be symmetric. For a
deterministic lattice gas, detailed balance requires that if
the transition matrix takes state s to state s’, then it must
also take state s’ to state s. In this case, semidetailed bal-
ance is the weaker condition that the final states are a
permutation of the initial states.

We now quote [2] and prove a theorem due to Hénon
on the existence of Gibbsian equilibria.

Theorem 1. Spatially uniform Gibbsian equilibria exist
for any lattice gas obeying semidetailed balance. These
equilibria are described by the Fermi-Dirac distribution

1

nt,‘
-3 augl
n=1

Ni= , (18)

1+exp

where the a, are n, arbitrary multipliers.
Proof. At first, Eq. (15) appears to impose »n conditions

on the n unknowns N, but the n, restrictions imposed by
Eg. (6) mean that only n —n_ of these conditions are in-
dependent and therefore that we ought to expect an n,
parameter family of equilibria. These will be the con-
stants a, in Eq. (18).

Taking the Fermi-Dirac distribution (18) to define an
independent distribution on the bits of the system, the
probability at any site of a fixed state s is given by

n N .
Po(s)=TI (N§ " (1—N§) . (19)
j=1

In order to show that this distribution on states defines an
equilibrium, we must show that the distribution is un-
changed by the collision operator. From the block diago-
nal property (7) of the transition matrix and the property
of semidetailed balance, it is clear that it will suffice to
prove that the probability (19) is dependent only on the
equivalence class of s and therefore on the quantities gf's’
for u=1,...,n.. Inserting Eq. (18) into Eq. (19), we
have

-3 auzq,“(l—si)]

exp
— pu=1 i
P O(S )= n,
Il |(1+exp | — 3 a,qf
i n=1
This expression indeed only depends upon the

equivalence class of the state s and therefore we have
proven that the distribution on states defined by Eq. (18)
is a Gibbsian equilibrium. |

The equilibrium distribution given by Eq. (18) is an n,-
parameter family of solutions for the N). By taking the
parameters «, to be spatially dependent, we can con-
struct a family of equilibria that generates correlations
only at O(e). These are precisely the type of spatially
varying equilibria that we desire for the lowest-order
means N} of our lattice gas. Thus, in what follows we re-
strict our attention to lattice gases that obey semidetailed
balance at lowest order.

Summarizing the constraints on the collision operator
at each order, we have the following: Qf, must
respect the conservation laws and obey semi-
detailed balance; Q.’l must respect the conservation laws,
but may violate semidetailed balance; Q) can violate ei-
ther the conservation laws or semidetailed balance.

Finally, we note that since the parameters a, are arbi-
trary multipliers, any set of n. independent functions of
them would also suffice to parametrize the equilibrium.
In particular, a natural and logical choice of parameters
are the hydrodynamic densities Q#. These can be related
to the o, by their definition Eq. (8),

Qt=gtNi(a,) for u=1,...,n (20)

¢ -
Thus the equilibrium distribution N} can be parametrized
solely by the equilibrium values of the n, conserved den-
sities.

C. Fermi metric

In what follows, we shall need the first two derivatives
of the N with respect to the Q#, so we compute them
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here by the chain rule. First, by differentiating Eq. (18)
with respect to a,, we obtain
AN}
da

=Ni(1—Ni)g 21
(where there is no summation over i because it appears
only once on the left). Next, by differentiating Eq. (20)
with respect to Q", we obtain

v nzc aN i aag nz ué aag
vo q v g ’
a; 30 &=1 9Q7

where we have defined the symmetric rank-two tensor

g =N{(1—Nj)qtqf . 22)
We denote the inverse of this matrix by g, so that

nC
> gu§g§v =8+, .
£=1

Since g¢, is a symmetric second-rank tensor, we can iden-
tify it as a metric on the space of hydrodynamic variables
QY. We call it the Fermi metric. In terms of the Fermi
metric, we have

aa§
aQ”

Finally, we can write

=g§v .

aN(,) < i i v
gk 3 N§(1—Nj)g'g,, (23)
v=1

(no sum on i). In similar fashion, we compute the second
derivative

3N

—————=Ni(1—N)(1—2N})gfq}" ’
aQ,u,an 0 0 04r9 g_é,"ugn

+2Ni(1—Ni)gf, 8enl (24)

where we have defined the Fermi connection

" = lgné 98 | 98s — 98 v
o2 3Q¥ aQ* 3Q*
— 88 Nb (1= N1 =2N})afafaf . (29)

Next, we introduce a characteristic lattice spacing c to
define the dimensionless lattice vectors

C
C —_
c

and consider the completely symmetric outer product of
k of these vectors ® e ’. It will be useful to include these
outer products in the above sums. Thus we define the
generalized Fermi metric

k
gk HE=N{(1—Nj)qtqf [@ ej] (26)

and the generalized Fermi connection

k
= —18,68,:Nb(1—N§)(1—2N})qlqfqf [® e ]
@7

r(k)7,,

Note that g(0)*$=gH¢ and roy,,=r",,. Once again,
to raise and lower the indices of these objects, we use the
Fermi metric g,, as a metric tensor; thus, e.g.,
g2, =g(2)%g,,.

In passing, we note that since the e/ are obviously in-
dependent of the Q*, we have

3g(k)y, | Bg(kly,  3g(k),,
00" oQ* Q¢

for all k. That is, we have defined a set of metrics and
their associated connections. For each k, the members of
this set comprise a completely symmetric tensor of rank
k. As we shall show, this structure is very useful for the
problem at hand.

From Egs. (23) and (24), we get

_1
I"(k)”w,—~ _z_gﬂ§

) | E
20" q'N, [8 e’] =g(k)",
and
i lomlé
agrag® (4N ® e’ =2[g(k)"T%,,~T(k)",,] .

Note that when k=0 these reduce to the identities
9Q"/0Q#=8", and 3%Q7/8Q*3Q¥=0, respectively.

D. Zeroth-order conservation equations

We can now examine the conservation equation (13) at

O(1). We have
v [‘i?N{, =0 for p=1,...,n, . (28)

Using Eq. (23), this can be written solely in terms of the
conserved densities and their gradients. We find

# V= =
Atzgl) -VQ¥=0 for u=1, n. .

E. Linearized Boltzmann equation
We return to Egs. (12) and (14). At O(e) we find

=L N{+Qive)], (29)

v At

No

At

where we have defined the Jacobian matrix of the lowest-
order collision operator at equilibrium,

1018
Jhi= -
oN/

N=N,

By differentiating Eq. (10), we can write this directly in
terms of the lowest-order transition matrix Ag(s—s’)
(this is the transition matrix corresponding to the lowest-
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order collision operator QJ),

T4 =2' Ao(s—s")s" '—s)(2s7—1)
X [T (Vo (1 — Ny =" (30)
k#j

Note that the gf“s comprise the components of n, null
left eigenvectors of J* o since

) 3 .
pyi=—2_(qgrQi =
qz‘]j aNj(qz QO) N=N0 0.

In what follows, we denote the eigenvalues of J by AX.
The corresponding right (left) eigenvectors are indexed as
contravariant (covariant) vectors and enumerated with a
subscript (superscript). Thus

J'iql, =Mq, (31)
and
gfJ =gl . (32)

Note that, for u=1,...,n,, this coincides with the
definition of the g} introduced in Eq. (5).

The modes enumerated 1, ...,n, correspond to null
eigenvalues of J and will be called hydrodynamic modes;
those modes enumerated n,+1,...,n will be called
kinetic modes. We shall often write H for the set
{1,...,n.} and K for the set {n.+1,...,n}. When the
kinetic eigenvalues satisfy A <0, we define the system to
be linearly stable. Since the eigenvalues of J set the time
scale for the equation, we see that for a linearly stable lat-
tice gas, the kinetic modes decay away rapidly, while the
hydrodynamic modes persist for long times. From
Hénon’s proof of Theorem 1, it follows that semidetailed
balance lattice gases are linearly stable around the
Gibbsian equilibrium, so they have A* <0 for vEK.

Postmultiplying Eq. (32) by g/, premultiplying Eq. (31)
by g}, and subtracting, we get

0=(AF—A"glg}; ,

so that right and left eigenvectors corresponding to
different eigenvalues are orthogonal. Thus they may be
chosen so that

&, =qlq’ . (33)

By including ®*e ’ in Eq. (33), we can define a generalized
Kronecker delta in the same spirit that we generalized the
Fermi metric and connection. Thus

k
8k, =gt {8 ej]q{ , (34)

so that 8(0)*,=6&,. Also, note that the indices of the
generalized Fermi metric and connection, as well as those
of the generalized Kronecker delta, can now be extended
to run over the kinetic modes as well as the hydrodynam-
ic modes by simply using the kinetic left eigenvectors in
Egs. (26), (27), and (34), respectively.

Finally, we note that it is possible to write an explicit,
closed expression for the right hydrodynamic eigenvec-

tors. From Eqgs. (15), (18), and (21), it follows immediate-
ly that

0=-2_qins )=yt N8
~da, ° / 3a,,

=J [gtNY(1—=N{)T,

whence we identify the right hydrodynamic eigenvectors
q;_L :qtvNé)( 1 —N‘l.') )g/,w .
Note that this result is in accordance with Eq. (22).

F. First-order solution

Consider Eq. (29) for the N'. Since J is a singular ma-
trix, we must verify that the equation is consistent. The
consistency requirement is found by premultiplying the
equation by the null left eigenvectors. We obtain the re-
quirement

V. N0 gMI N+ QLN )=

ql At

for u€ H. Note that this consistency requirement is pre-
cisely the zeroth-order conservation equation (28). It fol-
lows that V-(c'Nj)—Qi(N§) has no components in the
null space of J. Thanks to the completeness and ortho-
normality of the eigenvectors, this expression can be writ-
ten as

V-(cN)—QUNE)=S 7¢. ,

vEK

where
n"=q}[V-(c/N{)—Q{(N§)] for vEK .

The solution for N can then be written down immediate-
ly,

Ni=3 g+ 3 Tql,
vEH veEK
where the 6" are arbitrary. We fix the solution by assum-
ing, without loss of generality, that 6¥=0. That is, we as-
sume that the first-order contribution does not affect the
definitions of the conserved densities. The final result for
the N is then

ni=3 T4

V(N — QN
veEK

)], (35)
so that we have

N'=Ni+e 3

veEK

;q’ [V-(c/N{)— QINE)]+0(e) .

(36)

G. First-order conservation equations

We now insert Eq. (36) into the conservation equation
(13), retaining terms to O(e). After some manipulation,
we get the following closed set of equations for the con-
served densities:
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99 |V Ar=3 V(DH-VQ)+S* for uEH ,
o feH 37

where the advection coefficient, the diffusion coefficient,
and the source term are given by

S(1H CI(Q*)

AH *)= - -
AMEN=L 3 T (38)
d(1Feg(1) 1
u * 2 _ I
D §(Q )= At P (_}\’v) 23(2) el > (39)
Q*)'— @"(Q* (40)

respectively, and where
CL(Q*)=qlQL(NS(Q*)) for n=1,2. (41)

The compact form of this result makes it straightforward

to compute the transport coefficients of any lattice gas.
J

. . AN},
NHQ=NY@I )+ 3, S| (ot e+ +1 s
HLEH aQ 2
=Ny +te 3 No(1—Niy)gbge, Q4
E€EH

EEH &MEH

L1
2 &NEH

where we have defined the lowest-order Chapman-
Enskog equilibrium

N =N§(08)

and we note that the Fermi metrics and connections in
the above expression are now defined in terms of Ng,
rather than N,

To make it possible to incorporate this sort of ordering
into the above formalism, we return to the Chapman-
Enskog solution for the Boltzmann distribution, Eq. (36),
insert the above expansion of N f,(Q* ), multiply by the k-
fold outer product of the e vectors, and contract with
g!. In the interest of simplifying the algebra a bit, we
shall assume that Q’l =0 in this subsection; we do, howev-
er, continue to include Q) in our analysis. The assump-
tion that Q{=0 is not in any way essential, but it serves
to keep the algebra in check. We get
k

qu ei NI(Q*)

k
=qf [8 e’ }Né}o+ S glk)#(eQf+€2Q5)
EEH

+é? >

&EMEH

3 (k¥ ¢, —T(k ¥, | Q507
tEH

8k, @g(1)"
+tee 3 3 ———————Mg £.vo§ .

vEKEEH

wvEH anan

S No(1—Nigfge, 05+ 3 Nio(1—Nio)gfge, T

Note that knowledge of the conserved quantities and the
concomitant hydrodynamic modes is sufficient to predict
the form of this equation.

H. Ordering the conserved quantities

There is one additional technicality that we need to
discuss before presenting examples of this formalism. In
many situations of interest, the conserved quantities
themselves are ordered in the expansion parameter e.
For example, in an incompressible fluid, the hydro-
dynamic density is assumed to vary by O(€?) from a con-
stant background value and the hydrodynamic velocity is
assumed to be O(€) (low Mach number).

Consider the general ordering

Q'=Qf +eQt+E04+ -, 42)

where it is assumed that the zeroth-order value Q¥ is al-
ways independent of position and time. We can then ex-
pand the Fermi-Dirac equilibrium as

i

(e?Q4QY)+ -

,u,vQ”Q 1

S Noo(1=Ngo)(1—2N{o)gf i”gg,‘gan‘fQY]ﬂL SR

[

This result can be directly inserted in the conservation
equation (13) retaining terms to O(€?). After canceling a
factor of €2 throughout the equation, we get

123
901 +VAL=TF VA(DHVQ])+S* for pEH
ot EEH

(43)
where we have defined the advection coefficient
AHQY )—— 2 1g<1)"§ %QHQ%
+ 3 | 3 g4 T4, — (1), ‘
nEH |t€EH
X Q107 ] , (44)

where the diffusion coefficient and source term are still
given by Egs. (39) and (40), respectively, and where all
quantities are now understood to be evaluated at N,
Note that the diffusion coefficient is now a function only
of Q¢ and hence strictly independent of space and time.
The advection coefficient, on the other hand, is generally
quadratic in Q; and linear in Q,.

Also note that the advection coefficient has an O(1/¢)
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term and an O(1) term. If the O(1/¢€) term does not van-
ish, it is the dominant term in the equation. In this situa-
tion, the hydrodynamic equation reduces to the zeroth-
order conservation equation

v (45)

At S g()407|=

t€H

Finally, note that knowledge of the conservation laws
and concomitant hydrodynamic modes is sufficient to
predict the form of this equation and compute the advec-
tion coefficient. Only the computation of the diffusion
coefficient requires knowledge of the kinetic modes in this
ordering scheme.

IV. EXAMPLES OF THE
BOLTZMANN-CHAPMAN-ENSKOG ANALYSIS

In this section, we present four examples of the
Boltzmann-Chapman-Enskog formalism described in the
previous two sections. In each case, we work out the
form of the hydrodynamic equation and the transport
coefficient(s) predicted by the theory.

The first example is a one-dimensional, stochastic,
diffusive lattice gas with three particles per site (1D3P).
The second is a lattice gas for Burgers’s equation [8] in
one dimension. The third is a two-dimensional lattice gas
with four particles per site (2D4P) giving rise to coupled
diffusion equations. Finally, we consider lattice fluid
models; we consider a general class of such models and
describe in detail a particular model, the FHP-I lattice
gas fluid. For all but the first of these examples the
Chapman-Enskog method has already been carried out.
Our purpose, however, is to use these as sample applica-
tions of our general formalism and as examples for which
we shall study the exact dynamics later in this paper.
After presenting the complete lattice gas kinetic theory in
Sec. VI, we shall return to these examples in Sec. VII,
discuss observed discrepancies from the Boltzmann
theory, and show how they are explained by the present
theory. As we shall see, each example has its own unique
and interesting features in this regard.

A. 1D3P lattice gas

As a first example, we consider a diffusive lattice-gas
model in one dimension (D=1). The model has three
bits per site (n =3), corresponding to the presence or ab-
sence of left-moving, stationary, and right-moving parti-
cles, respectively. These bits are denoted by the respec-
tive elements of the set B={—,0,+}. Collisions occur
only if exactly two partxcles enter a site. If we denote the
two particle states by +={—,0}, 0= ={—,+}, and

={0,+}, then the nontrivial elements of the state
transition table can be written
a(s—s’) s’
s F 0 =
-1: 1—n? nP(1—n") nn’
0 nPn’” 1—n? n?(1—n’)

nP(1—n") nfn” 1—n?

The bits n? and n” are random bits, which are sampled
separately at each lattice site and at each time step with
average values (n?)=2p and (n")=1. (Note that r and
p are not indices here, but simply labels for the random
bits.) Here the parameter p €[0, 1] may be thought of as
the probability of collision from, e.g., + to 0. The value
of the bit n? effectively determines whether or not a col-
lision will occur and that of n” determines which of the
two possible outcomes will result.

Note that these collisions conserve particles (n,=1); it
is the particle density that obeys the macroscopic
diffusion equation. The coefficients g for the conserved
quantity are

gl =ql=ql =1. (46)

The collision operator is given by Eq. (4),
l(n*)_np[nt i+1 t+2__nrntnt+1n1+2__nrn1nl+lnt+2]
(47)

for each i €B, where n'=1—n' denotes the complement
of a bit and where the addition of integers to i is under-
stood to increment i through the set B in cyclic fashion.
According to Eq. (6), we observe that

0=0"+o’+o"

We now consider the ensemble average of this system.
The ensemble-averaged state transition table is

A(s—s') s’
s F 0
+ 1-2p  p P
0 P 1—2p P
= P P 1-2p

Note that semidetailed balance is satisfied since the
columns of the above table sum to unity. Also note that
the ensemble-averaged collision operator in the
Boltzmann approximation ‘is given by Eq. (10), which
reads

Qi(N*)=2pNi+1Ni+2__pNiNi+l_pNiNi+2 .

We do not order the collision operator in this lattice gas,
so that Q'=Q,. Using Eq. (46), we calculate the local
Fermi-Dirac equilibrium from Eq. (18),

Ny =N§=N§=—1—=f, 48)

where a parametrizes the distribution function and f is
the mean occupation number. Note that the total density
is given in terms of a (and f) by

3
=—=3 s
Q 1+e™ ¢ f
which is the analog of Eq. (20).
We now perform the Chapman-Enskog perturbative
analysis. The Jacobian of the collision operator at equi-
librium is
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=2pf pf  pf
J=1| pf —2pf pf |. (49)
pf pf —2pf
This matrix has eigenvalues

Al=0
and
A=A2=A3=—3pf ,
with corresponding left eigenvectors
g'=(+1 +1 +1),
g*=(—1 0 +1), (50)
g’=(—1 +2 —1)

and right eigenvectors

+1 —1 —1
‘112‘2‘ +1 1, ‘12:% 01, ‘13=% +2].
+1 1 —1

It is easy to check that these eigenvectors satisfy Eq. (33).

We may now construct the Fermi metric. There is
only one hydrodynamic mode, so g#¥ is a 1X1 matrix.
From Eq. (22) we see that its element is

g"'=3/(1—f)
and hence
-1
EuT3ra—p)

To get the generalized Fermi metric, we write ci=ce’
where

— A 0—

e =—%, e , et=+%,

with X being a unit vector and c the lattice spacing. Us-
ing Eq. (50) in Eq. (26), it follows that

g(D''=0, g()'=2f(1—f)%, g(1)’'=0
and

g2)M=—+2f(1—f)R%,

g(2)¥'=0,

g2)P3l=—2f(1—f)X% .
Using g, to lower indices, we find

g =0, g(1)*,=2%, g(1)’,=0
and

g(2)',=+2%%, g(2)4,=0, g(2)’=—12%%.
Finally, the generalized Kronecker delta §(1)*, given by
Eqg. (34), has components

a(1L,=%, 81);=0.

The conserved quantity Q is not ordered, so we can use
the results of Sec. III G. The collision operator was not

ordered, so @7=C3=0; Eq. (37) thus tells us that there is
no advection or source term in the final hydrodynamic
equation. The diffusivity is given by Eq. (39),

2 8(1)! ®g(1)”
@11:_‘:__ __.__g___l___l_g(z)ll
At |k (=AM 2
2
== |1 =Rz

Writing V=3%0/0x, Eq. (37) gives us the hydrodynamic
equation

of _ 3 |pHof
ot  Ax D ox |’
where the scalar diffusivity is
_cl |2 o2
3At | —A 3At | 3pf

Since p lies in [0,1] and f lies in [0,1], it follows that D is
always positive.

B. The Burgers equation lattice gas

The next example is a lattice gas for the one-
dimensional (D =1) Burgers equation [8]. This model
has two bits per site (n =2) corresponding to particles
moving left and right. The bits are denoted by the ele-
ments of the set B={—, +}. Collisions occur only when
exactly one particle enters a site, from either direction.
The result of a collision is then one particle leaving to the
left (state { —}) with probability (1—a)/2 or to the right
(state {+}) with probability (1+a)/2, regardless of the
direction of the incoming particle.

The state transition table is thus given by

a(s—s') s’
s - +
— 1—n" n”"
+ 1—n’ n’"

where n” is a random bit with mean (n")=(1+a)/2.
Note that particles are conserved, so

gl =g} =1.

The collision operator is given by Eq. (4),
ot(n*)=x[n'nTn —n"ntn_].

We observe that, in accordance with Eq. (6),
0O=0"+ot.

The ensemble-averaged state transition table is

A(s—s') s’
s — +
- (1—a)/2 (1+a/2)
+ (1—a)/2 (1+a/2)
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and the ensemble-averaged collision operator in the
Boltzmann approximation is given by Eq. (10), which
reads

QF(N*)== m(l—N*)N_—%g—N“L(I—N')

Note that the collisions do not satisfy semidetailed bal-
ance unless ¢ =0. We therefore restrict attention to small
values of the bias [a ~O(€)] and order the Boltzmann
collision operator as

QF(N*)=£L(N~—N),
Qli(N*)=i%(N"+N+)TLaN_N+ )

Note that both Q7 and Qf conserve particles exactly and
that QF satisfies semidetailed balance.

The local Fermi-Dirac equilibrium is given by
.
1+e™ @
where a parametrizes the distribution function and f is

the mean occupation number. The total density is given
in terms of a (and f) by
2
=—=2f.
Q 1+e™¢ 4
The Jacobian of the collision operator at equilibrium is

~1 +%j

NG = =/,

J=

+ —

This matrix has eigenvalues
Al=0, A*=-—1,

with corresponding left eigenvectors
g'=(+1 +1),
g*=(+1 —1)

and right eigenvectors
_1|+1 — |+1
™7 | +1] 92771

Once again, it is easy to check that these eigenvectors
satisfy Eq. (33).

Again, there is only one hydrodynamic mode. The
components of the Fermi metric and generalized
Kronecker delta are readily calculated, as in the previous
example. Once again, the conserved quantity Q is not or-
dered, so we can use the results of Sec. III G. This time,
however, the collision operator is ordered. The first-
order collision operator respects the conserved quantity,
as required, so @]|=0. The component @3, on the other
hand, is nonzero, so there will be an advective term in the
hydrodynamic equation. From Eq. (41), we find
0

Ci=a(N§ +Ny —2N$ Ny )=2af(1—f)=aQ 5

The advection coefficient is given by Eq. (38),

ANQI= 2 T (T At

c S(1),CHQ*)  ge ) 0 |.
At veK *

and the diffusivity is given by Eq. (39),
o< 8(1\eg(l” 1

ar & (—a 2°

Writing V=%3/0x, Eq. (37) gives us the hydrodynamic
equation

c2

99  3A _ 3 |00
ot + ox ox D ax |’
where the scalar advection coefficient is
ac Q
=— 1—=
a=to)i-2|

and the scalar diffusivity is

C2

=2Ar
Finally, if we make the change of variables
u=(ac/At)(1—Q), this becomes Burgers’s equation in
the more familiar form
ou du d%u
Lrut=pt
ot T4ax  Pax2

C. 2D4P lattice gas

Next, we consider a diffusive lattice-gas model [30,31]
in two spatial dimensions (D =2). The lattice for this
model is the standard two-dimensional Cartesian lattice.
The lattice gas has four bits per site (n =4), correspond-
ing to the presence or absence of particles moving along
each of the four unit vectors in the lattice, which we refer
to as east, north, west, and south. These bits are denoted
by the elements of the set B=1{1,2,3,4}, respectively.
Collisions occur if and only if exactly two particles enter
a site at right angles and are effected by taking the com-
plement of all four bits at such a site. For convenience,
we use a diagrammatic notation for the set of states
S={sCB}. In this diagrammatic notation, each
nonzero bit in a state s is denoted by ‘a line segment
emanating from a common vertex. Thus, for example,
the state s = {2,3} would be denoted by the symbol + Us-
ing this notation, the nontrivial elements of the state
transition table can be written

a(s — ') s
e
- 0(0|1(0
sl 010|011
- 110(010
* 0{1]0(0
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This collision rule separately conserves the number of
east-west moving particles and the number of north-
south moving particles (n,=2). Thus the coefficients g}
and g2 for the conserved quantities are given by
+=0, -
1=0.

The collision operator is given by Eq. (4),

a)t(n*)=ntnt+ln1+2ni+3+nini+lni+2ni+3

_n1n1+lnx+2ni+3_ni i+lni+2ni+3

=(ni+2_nl)(nt+l+nl+3___ni+lni+3) ,

where i €EB and the addition of integers to i is taken
mod 4. Since the lattice gas is deterministic, we have
A(s—s')=a(s—s') and the ensemble-averaged collision
operator in the Boltzmann approximation is given by
O'=a', that is,
Q(N*)=Qy(N*)
=(Ni+2__Ni)(Ni+1+Ni+3__Ni+1Ni+3) .

This lattice gas obeys semidetailed balance since the
columns of the state transition table sum to unity. In
fact, the lattice gas obeys detailed balance since the tran-

sition matrix is symmetric. Using Egs. (51), we calculate
the local Fermi-Dirac equilibrium from Eq. (18),

1 _
N(1)=N8= e M
1+e !
Ny=N§=—T1—=v,
1+e 2

where a, and a,, or equivalently 4 and v, parametrize the
equilibrium distribution function. The east-west and
north-south densities are given by

1—_ 2
14e &

We now perform the Chapman-Enskog perturbative
analysis. The Jacobian of the collision operator at equi-
librium is

=2IJ" Q2=#=2V .

l1+e @

—A(v) 0 +A(v) 0
_ 0 —Au) 0 +Ap)
T=14+am 0 —A o0 |’
0 +Au) 0 —Ap)
where

A(z)=2z(1—2z) .
This matrix has eigenvalues
Al=A2=0, A =—2A(u), A*=-—2A(v),
with corresponding left eigenvectors
g'=(+1 0 +1 0), ¢*=(00 +1 0 +1),

(52)
g*=(+1 0 —1 0), g*=(0 +1 0 —1)

and right eigenvectors

+é 0

— _ +1
ql_% +1 [ Q2_% K

0 +1

+(1) 0

_ _ +1

GB=3 1| %=3| o

0 —1

We now construct the Fermi metric. There are two
hydrodynamic modes, so g” is represented by a 2 X2 ma-
trix. From Eq. (22) we see that

Aw) o |¥
0  Av)

grr=

The components of the remaining tensors are easily cal-
culated as in the previous examples. The conserved
quantities are not ordered, so we can use the results of
Sec. III G. The collision operator is not ordered for this
lattice gas, so €]=C3=0 and there are no advection or
source terms in the hydrodynamic equations. The
diffusivity is given by Eq. (39),

2 8(1) ®g(1)": 1
o= _——= — —g(2)
£ At veK (=A%) 28
Dvurk o |
- 0 D, vI¥y | ¢’
where we have defined the scalar diffusivities
C2 2 c2 1
D(p,v) 247 | (=) 2At | 2u(1—p)
and
c 2 c? 1
Dlv,u) 287 | (=% 2At | 2v(1—w)

Writing V=%0/0x +¥3/dy, Eq. (37) gives us the pair of
hydrodynamic equations
v_2a

> 9t oy

¥
dy

oy _ 9

ar  ox Dipv)

o
Dviw) 5y

Since p and v lie in [0,1], it follows that the diffusivities
are always positive.

Note that the diffusivity D(u,v) of north-south parti-
cles depends only on the density u of east-west particles
and vice versa. In the context of the Boltzmann theory,
this is because north-south particles scatter only from
east-west particles and vice versa. In Sec. VII we com-
pute the effects of correlations on these diffusivities and
find that both renormalized diffusivities depend upon
both particle densities; this is the reason for including the
functional dependence on both densities in D.

D. Lattice-gas fluids

Finally, we consider a class of lattice gases that have
been widely used in recent years for the simulation of in-
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compressible Navier-Stokes fluids [1,2]. Such models ex-
ist in dimensions two, three, and higher. They conserve
mass and momentum, as is appropriate for the Navier-
Stokes equations.

The nontrivial collision rules for one of the simplest
models of this type, known as the FHP-I model, are
shown in Fig. 1. The FHP-I model is defined in two di-
mensions on a triangular lattice. Note that the two-body
collisions have two possible outcomes. We may choose
between these by a random bit »” with mean . Variants
of this model exist with other three-body and four-body
collisions, with rest particles, etc. We use the above mod-
el because it is simple but nevertheless fully illustrative
for our purposes. Inclusion of the three-body symmetric
collision is essential because there would otherwise be
three conserved components of momentum.

Consider a general lattice gas with a collision rule
preserving particle number and momentum in each direc-
tion on a lattice in D dimensions. We assume that bit i at
a site represents the presence or absence of a particle of
unit mass and momentum c ‘/At. (The restriction to unit
mass particles is made only to simplify this presentation
and is not in any way essential. Many lattice-gas fluid
models allow for particles of different masses.) We can
then write the (ensemble-averaged) mass and momentum
densities as

M=
!o
2

u —

i=1

respectively. The full set of ensemble-averaged conserved
quantities for this problem is thus

o= 3.
Note that this is a (D +1)-component column vector
since there are D components of conserved momentum
density and one conserved mass density. We shall abuse
notation by sometimes using p and u as indices; thus we
separate the above equation into the components Q°=p
and Q"=u. Note that Q" refers to D distinct com-

In Out

FIG. 1. FHP-I collision rules.

ponents of Q.

We can at once identify the left hydrodynamic eigen-
vectors of the system. They are gf=1 and g/"=c'/At.
To simplify the presentation, we use natural lattice units
(c=At=1) throughout this subsection; we can always
reintroduce ¢ and At later by dimensional analysis con-
siderations. Thus we write

af=1, g'=e’.

For an incompressible fluid, the conserved densities are
ordered in the expansion parameter € as [32]

p=pote€p, u=eu, .

The second of these equations states that the Mach num-
ber is of the same order as the smallness parameter used
in the Chapman-Enskog analysis, that is, the Mach num-
ber scales as the Knudsen number. The first equation
says that the density fluctuations are smaller still; they go
as the Mach number squared.

The ordering of the conserved quantities, Eq. (42), for
this system is then

—|pl_ |Po 0 2 |P2
Q {u] 0 +e u +e€ 0
:Qo+€Q1+€2Q2 .

Thus the zeroth-order Fermi-Dirac equilibrium is found
by considering only ¢” in Eq. (18). We get

L _,

Nigj=—"—
0 4o

where f is the mean occupation number of the zeroth-
order equilibrium. Note that f is strictly constant, in-
dependent of spatial position and time.

To proceed, it is necessary to impose some require-
ments on the lattice. Let us assume that the lattice is a
regular lattice and that all tensors formed from outer
products of the lattice vectors are isotropic through the
fourth rank [22]. That is, we demand that the lattice vec-
tors be such that

é i—Q é ini— 1

€ =, ee —=—1,

i=1 i=1 D

n . . . n . . . . n (53)
iele =0, i i i— Q,

2 elele 2 e = )

i=1 i=1
where we have defined
Qjpr =804 +88;, +8;8; .

We can now construct the Fermi metric. There are
D +1 hydrodynamic modes, so g*¥is a (D+1)X(D+1)
matrix. From Egs. (22) and (53), we see that it is
uv

1 0
g=nf—f)| |
0

D

Since the conserved quantities are ordered, we are go-
ing to need the Fermi connection as well. From Egs. (25)
and (53), we see that it is
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n

1 0
0 D1

01

_ (1—2f)
== 10

wy 2nf(1—f)

where we have used a row of matrices to represent the
variation of the three indices; we shall occasionally use
this representation for third-rank quantities when it does
not cause ambiguity.

Next, we can compute the components of the general-
ized Fermi metric with hydrodynamic indices. From
Egs. (26) and (27), we have

b

v uv

koo k+1 e
2®e‘ 2 ®e'!
gk =f(1—f) k+1 k+2
> ®e ¥ ®e'

Likewise, the components of the generalized Fermi con-
nection are

(1—2f)
T, =—— 2
Ry 2n2f(1—f)
k k+1
>®e’ DI Q e
X k+1 k+2

DY ® ¢! D’Y ® e
i i

uv
k+1 k+2 "
>®e’ DY ® e
i i
X k+2 k+3

DY ® e D’F ® e
i i v
All of the components of these objects that we shall need
can be evaluated from Egs. (53).

Equation (43) now tells us the form that the hydro-
dynamic equations will take. We first examine the equa-
tion for conservation of mass. Setting the index u to p,
we see that the O(1/¢€) advection term survives and all
the O(1) terms vanish; the next surviving terms are O(e€).
Thus, looking to Eq. (45), we get the equation

V- =0

£ P
2,80 £0f

or, upon simplification,
V * ul = 0 > (54)

to O(€?). We recognize this as expressing the condition
that the velocity field must have zero divergence in the
incompressible limit.

Turning attention next to the equation for conservation
of momentum, we set the index u to u. This time we find
that the O(1/¢€) part of the advection term vanishes, so
the hydrodynamic equation is given by the O(1) terms in
Eq. (43). For this situation, Eq. (44) for the advection
coefficient reads

A Hpo)=g(1)",08
+[g(1)", Py, +g(1)%-T%,

(po)
—I‘(l)u“u]:ulul=Pl+ £2Po uu;,
Po
where we have defined the factor
D 1-2f
8= 5 | T=f
and the pressure
PETI)‘[Pz“‘g(Po)u%] (55)

written in lattice units.
Next we turn our attention to the diffusivity tensor
DY, given by Eq. (39). We have

. . n . . .
8(1)",=gje'q, =3 qlele’,

j=1
D @ -
g(l)vuzguug(l)uv=_ 2 qj"elel ,
(e}
D »r ...
u — 2 uu — = JalalaJ=
g(2)", =g .8(2) njzleeee D+2Q’
so Eq. (39) becomes
w G_ c? DD+2) mom
D= D1 2)ar eiej ek ef
974, 1
__Q'_, ,
PSS f“J

(56)

where we have made it clear that D", is a fourth-rank ob-
ject by explicitly writing the four spatial indices i, j, k,
and ! and where there is an implicit sum over m and p.
Now since the principal fourth-rank tensor constructed
from our lattice vectors [see Eq. (53)] is isotropic and
since we have done nothing else to break isotropy, this
fourth-rank tensor must be isotropic as well. That means
that it must be of the form

(D", =v8: +ad;; 8 +B8y8; 5 (57

so that the diffusive term on the right-hand side of the
hydrodynamic equation becomes

VD, HVu =vVu;+V,[(@a+B)V-u] .

Note that the second term on the right-hand side van-
ishes due to the incompressibility condition, Eq. (54), and
v emerges as the shear viscosity in the hydrodynamic
equation (43), which can now be written

du;. + g(po)
ot Po

u,;-Vu,=—VP+vVau . (58)

With the exception of the pathological factor g(p,) in the
inertial term, which we shall address below, we recognize
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this as the incompressible Navier-Stokes equation. (Re-
call that u is the momentum density, not the hydro-
dynamic velocity.)

To get a closed expression for the viscosity v, we take
the following traces of Eq. (57):

D", Y=Da+DB+D,
(D", H=Da+D’B+Dv,
(D “fuj)§=DZa+D3+Dv .
These three equations may be solved for v to yield
(D+DD, =D )= @D,
D(D—1)D+2)

Inserting Eq. (56), after a bit of algebra we get the follow-
ing result for the viscosity of a lattice fluid:

y=

= c? D s q(,"(e”‘-e")zqn”_l

(D+2)At | n(D—1) E% (—AY) 2|

(59)
We can compare this result with that of Hénon [22],
2

S S P §

V= D+oar M|
where the quantity Ay is given by
1 1 D
—_ = | == rNep—1loq n—p—1
Ay 2n |D—1 ?;,A(s_’”f (1=7)

X[Y(s)—Y(s)]:[Y(s)—Y(s")],
where Y(s) is the traceless part of X(s)
== ——L
Y(s)=X(s) Dl

and X(s) is in turn given by
X(s)=3 slele’
J
with trace

P=TI[X(s)]=3 s/ .
J
Note that our analysis has yielded an alternative expres-
sion for Hénon’s quantity,

s gy(e™e") gy

veEK ( _)"V)

So far, we have assumed only that the lattice vectors
satisfy Egs. (53) and that the particles have unit mass and
speed. To evaluate Eq. (59) for the shear viscosity, how-
ever, it is necessary to specify a particular collision rule.

Thus we now specialize to the FHP-I lattice gas, in two
dimensions (D =2), with six bits per site (n=46), and
with lattice vectors given by

D
D—1

=1

e’=cos 2—76T'L X+sin —2%1 ¥.

We then have

(ej-ek)2=cos2—217—(zé:—k—)]
Y
IR
Fpt

IR N
b3y
Li1 g

The collision rules are illustrated in Fig. 1. We form .
the Jacobian of the collision operator from Eq. (30). Be-
cause the collision rules are invariant under cyclic inter-
change of the lattice vectors, the Jacobian is a circulant
matrix, so it is particularly easy to write down its eigen-
values and eigenvectors [21]. We find

}\,1=K2=7\.3=0,
AM=A0=—-3f(1—f),
M=—6fA1—f)?,

with corresponding left eigenvectors
g;=(+1 +1 +1 +1 +1 +1),

V3

q2=T(O +1 +1 0 —1 —1),
=—l—(+2 +1 -1 —2 —1 +1),
3= 5
q4=%(+2 -1 -1 +2 —1 -—1),
gs=(+1 —1 +1 —1 +1 —1),
V3
q6=—2—3(0 +1 —1 0 +1 —1)
and right eigenvectors
i} 0 +2
+1 +1
1 |+1 2 V3 |41 s |—1
976 |+1 4 6 o 4 s |—2]"
+1 -1 -1
+1 —1 +1
+2 +1 0
-1 —1 3 +1
—1 |1 _1|t+1 _V3i-1
q4_‘é‘ +2 | qs'“% -1 qﬁ—_6— 0
-1 +1 +1
—1 -1 —1

It is now a simple matter to plug these quantities into
Eq. (59) to obtain the shear viscosity (we now restore the
dimensioned quantities ¢ and At)

c? 1 1
_— + J—
8At | (—A% (=A%)
_c|__ 1 1
At | 12f(1—f) 8|’
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which is the expected result for the viscosity of the FHP-
I lattice gas under the Boltzmann approximation [2,21].

To conclude this subsection, we discuss the pathologi-
cal factor g(py) that appears in front of the inertial term
of the Navier-Stokes equation (58). Note that the convec-
tive derivative operator 9,+u-V is Galilean invariant
since it retains its form under a Galilean transformation
x—x'+Vz' and t—t'. Thus the presence of the g(p,)
factor in the inertial term is reflective of a breakdown of
Galilean invariance. As has been pointed out by
numerous authors [1,2,21], this is not surprising since the
lattice itself constitutes a preferred Galilean frame of
reference.

In practical simulations of incompressible fluids, this
factor is not a problem since it is constant and can be re-
moved by a simple rescaling of either the dependent or
independent variables. Similarly, the rather unphysical
equation of state (55) is not a problem since the equation
of state is irrelevant in the incompressible limit. Efforts
to extend lattice-gas methods to treat compressible fluids,
however, must deal with these problems. Techniques are
known for doing this, but they are outside the scope of
this paper.

V. EXAMPLE CALCULATION

In this section we give a simple example of how corre-
lations between particles in the 1D3P lattice gas give rise
to a modification of the Boltzmann equation. This exam-
ple calculation is intended to serve as an introduction to
the more general analysis of the following section. The
reader may thus find it useful to refer back to this exam-
ple while working through the following sections.

In the 1D3P lattice gas, the dynamical variables are
the bits n'(x,t), where i€{—,0,+} and x and t are
integer-valued space and time coordinates. We shall
choose a particular variable n 7(3,3) and describe some
of the corrections to the Boltzmann equation for this
variable.

If we take the ensemble average of the collision opera-
tor Eq. (47), we can write an exact equation for the den-
sity of the bit we are interested in:

N%3,3)=N%3,2)+2p{(n"(2,2)n "(4,2))
—p{(n%3,2)n"(2,2))
—p{n(4,2)n°%3,2)) . (60)

Figure 2 depicts in a graphical form the set of variables
that appears in this equation. (Throughout, we shall de-
pict diagrams for one-dimensional lattice gases with a

vertical time axis.) Applying the Boltzmann approxima-
J

=2 r =3 r=4
t=2 n°(3,2
nt(2,2) n=(4,2)
t = o
n°(3,3)

FIG. 2. Diagram of variables appearing in the equation for
N™(3,3).

tion to Eq. (60) would reproduce the Boltzmann equation
as stated in Sec. IV A. This approximation is corrected
by the existence of correlations between the pairs of vari-
ables in the two-particle means. The two-particle con-
nected correlation function is defined to be the difference
between the mean of a product and the product of the
means (we denote single-particle means by capital letters
as usual),

I'(x,y)=(xy)—XY .

Thus the correction to the Boltzmann approximation for
Eq. (60) is given by

8N°3,3)=2pT(n " (2,2),n " (4,2))
—p(n°3,2),n*(2,2))
—pT(n~(4,2),n%3,2)) . (61)

We have now expressed the mean of a particular vari-
able in terms of the means and connected correlation
functions of the variables at the previous time step. In
order to analyze the exact equations of motion for a lat-
tice gas, we are interested in constructing an equation
where the expression on the right-hand side is given com-
pletely in terms of single-particle means. To accomplish
this, we must express the correlation functions in Eq. (61)
in terms of means at still earlier time steps. As an exam-
ple, we consider the term

I'(n%3,2),n7(2,2)) .

This term appears with a coefficient of —p in Eq. (61);
such a coefficient will be called a correlation vertex
coefficient in Sec. VI. To calculate this correlation func-
tion in terms of the means and correlation functions at
time =1, we can use the equation of motion for each of
the two bits in turn. We have

['(n°%3,2),n%(2,2))=(n%3,2)n 7(2,2)) —(n%3,2)){n *(2,2))
=T'(n%3,2),n*(1,1))+2pT(n%3,2),n%2,1),n ~(3,1))
+2pN (3, 1)IN(n%3,2),n%2,1))+2pN°%2, 1) (n%3,2),n ~(3,1))
—pT(n°3,2),n *(1,1),n7(3,1))—pN ~(3,1)I(n°(3,2),n T(1,1))
—pN (1, 1)T(n°%3,2),n (3,1))—pT(n°3,2),n°%2,1),n T(1,1))
—pN T (1,1)I(n°3,2),n%2,1))—pN°2, )T (rn°(3,2),n *(1,1)) ,



528 BRUCE M. BOGHOSIAN AND WASHINGTON TAYLOR 52

where we have expanded three-particle means in terms of connected correlation functions using the cluster expansion
(xyz)=T(x,y,z)+ZT(x,y)+ Y(x,z)+XT(z,y)+XYZ .

We select a single term
I'(n°3,2),n7(3,1))

for further analysis. This term appears in the above expression with a coefficient of 2pN%2,1)—pN T(1,1). As we shall
discuss in Sec. VI, when we are performing the Chapman-Enskog analysis around a homogeneous equilibrium, connect-
ed correlations in a semidetailed balance lattice gas are always of order €. Thus, in an order € analysis, we can substi-
tute the equilibrium values for the single-particle means, giving us a coefficient of pf. Using the same argument as

above,

I'(n~(3,1),n%3,2))=(n"(3,1)n%3,2)) —{(n ~(3,1)){n"3,2))
=T(n"(3,1),n%3,1))+2pT(n ~(3,1),n*(2,1),n " (4,1))
+2pN ~(4,1)[(n ~(3,1),n T(2,1))+2pN T (2,1)[(n ~(3,1),n ~(4,1))
—pT(n7(3,1),n%3,1),n ~(4,1))—pN ~(4,1)T'(n ~(3,1),n%3, 1))
—pN°3,1)I(n ~(3,1),n " (4,1))—pI'(n ~(3,1),n 7(2,1),n%3,1))
—pN°3,1)T(n ~(3,1),n *(2,1))—pN *(2,)I'(n ~(3,1),n%3,1)) .

Once again, we shall analyze only a subset of these terms.
We extract the coefficient of

I'(n~(3,1),n°%3,1)),
which is (inserting the equilibrium values)
1—pN ~(4,1)—pNt(2,1)=1—2pf +0(€?) .

Let us recapitulate the analysis so far. We have writ-
ten the exact equation for the variable n *(3,3) in terms
of means and connected correlation functions at earlier
time steps. We have continued to expand the correlation
functions in terms of earlier time steps and have conclud-
ed that theer is a plethora of corrections to the
Boltzmann equation, included in which is the term

8N9(3,3)= -+ +(—p)pf)1—2pf)
XT(n~(3,1),n%3,1))+ - -+ . (62)

We now wish to continue the process one step further
by expressing this correlation function in terms of the
J

f

means and correlations at time ¢ =0. Because the corre-
lated variables are at the same vertex (x =3), we cannot
expand the equations of motion for the variables sepa-
rately. Instead, we must use the state transition table
from Sec. IV A to directly compute the two-particle
mean

(n7(3,)n%3,1)) =(1—2p){n ~(4,0)n°(3,0))
+p{n"(4,00n7(2,0))
+p{(n*(2,00n%3,0)) . (63)

We can now combine Eq. (63) with the exact equations
for the single-particle means of n (3,1) and n%3,1) to
compute the correlation function from Eq. (62). We are
particularly interested in the terms that contain only
single-particle means since these terms will directly modi-
fy the original Boltzmann equation without having to fur-
ther expand connected correlation functions. Thus,
neglecting correlations on the right-hand side we have

I'(n7(3,1),n%3,1))=(1—2p)N ~(4,0)0N%3,0)+pN ~(4,0)N T(2,0)+pN " (2,0)N%3,0)
—[N ~(4,0)+2pN°3,0)N T(2,0)—pN ~(4,0)N°%3,0)—pN ~(4,0)N *(2,0)]
X[N%3,0)+2pN ~(4,0)N *(2,0)—pN ~(4,0)N°(3,0)—pN°(3,0)N *(2,0)] .

As in the Boltzmann—Chapman-Enskog analysis, we as-
sume that the deviations of the single-particle means
from equilibrium are of order €, so we can take deriva-
tives and get

T(n~(3,1),n%3,1))= —pf(1—f)N{ (4,0)
—pf(1—£)IN9(3,0)

+2pf(1—fIN{(2,00+0(€?) .
(64)

Combining this with Eq. (62), we have calculated a set
of terms that appears in the exact equations of motion of
the 1D3P lattice gas. By carrying out such a calculation
for every correlation function appearing in the expansion
of Eq. (61), we could write the exact lattice-gas equation
as an infinite sum of such terms. It might seem that sum-
ming this infinite series of terms and accounting for their
effects on the dynamics of a lattice gas is a hopeless task.
However, for many lattice gases it turns out that the only
effect of this infinite series of terms is to modify (renor-
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malize) the eigenvalues of the Jacobian matrix by a finite
amount.

For example, if we combine Egs. (62) and (64), we see
that

aN°(3,3) _

s —pf(1—fF)— 1—2pf)
aN%(3,0) pf(A—=f)—p)pf) pf

+ ..

Noting that N7 (x,0) differs from N7 (x,3) only by
O(€?), we see that this is a correction to the Jacobian ele-
ment J, of Eq. (49). Moreover, the paths of the correlat-
ed quantities that gave rise to this term can be illustrated
by the graph in Fig. 3. The fact that the initial and final
arrows are in the O direction indicates that this is a
correction to J%, and we note that the factors in this
correction can be associated with the vertices of this
graph, as shown.

In the following section we develop a systematic ap-
proach for computing the correction terms in the exact
lattice-gas equations. We develop a diagrammatic
method for categorizing the correction terms and demon-
strate that the diagrams can be grouped into sets, whose
combined effects on the dynamics are simply to renormal-
ize the eigenvalues of the Jacobian matrix.

VI. EXACT ANALYSIS

We now proceed to develop in a more general context
the exact description of hydrodynamic behavior in the
scaling limit, dropping the molecular chaos assumption
and including effects due to correlations. As mentioned
in Sec. I, the diagrammatic formalism we develop here is
similar in many ways to the analogous formalism for con-
tinuum kinetic theory. Unlike continuous systems, how-
ever, the discrete nature of lattice gases allows us to ex-
plicitly write the complete set of terms that contributes
correlations over a finite time interval as a sum over a
finite number of diagrams. The discretization of lattice
gases also changes the nature of the vertices in correla-
tion diagrams. In a lattice-gas system, the vertices
represent correlation interactions at a single lattice site
and can be simply calculated from the time-development
equation. There is a finite number of distinct vertex
types, corresponding to correlated particles arriving at

t=20

t=1 —pf(L = 1)
t =2 pf 1—2pf
t=3 P
t=4

FIG. 3. Example diagram correcting the Jacobian for the
1D3P model.

and departing from a single lattice point at a single time
step.

In Sec. VI A we generalize our notation slightly to deal
with arbitrary sets of particles on the lattice. We begin
developing the diagrammatic formalism for lattice gases
in Sec. VIB by discussing several alternate descriptions
of correlations in ensembles. In Sec. VIC we express a
renormalized version of the Jacobian matrix J* ; in terms
of an infinite series. The terms in this series are factor-

‘ized into independent contributions from each lattice site

in Sec. VID and written in diagrammatic notation in Sec.
VIE. In Sec. VIF we describe how several useful ap-
proximations, such as the ring approximation, can be cal-
culated in our formalism as a sum over a restricted class
of diagrams. In Sec. VIG, we prove that a fairly wide
class of lattice gases has the property that the only effect
of correlations is to modify the eigenvalues of the J ma-
trix in terms of which the transport coefficients are de-
scribed. Finally, in Sec. VI H, we describe the effects of
the higher-order collision terms Q and Q) on the exact
hydrodynamic equations.

In Secs. VII and VIII we apply the techniques of this
section to the lattice gases described in Sec. IV. The
reader may find it helpful to refer to Secs. V, VII, and
VIII for concrete examples of the formalism while read-
ing this section.

A. General notation

In this subsection, we develop a slightly more general
system of notation suitable for describing the exact dy-
namics of a lattice gas. This notation is similar to the
matrix form of notation used in Sec. II; however, we now
wish to consider the space of all configurations of the full
system rather than simply the set of states at a single lat-
tice point.

Recall that we can refer to an arbitrary bit of the sys-
tem by an index a €E8B. We now introduce a propagation
operator P°,, which acts on the space of bits in the entire
system. This operator is an N XN permutation matrix.
It connects bit b with bit ¢ if and only if the particle
represented by bit ¢ moves into bit b during the propaga-
tion substep, that is,

it if b=a(i(c),x(c)+c)
¢ |0 otherwise .

In terms of this operator, the exact dynamical equation
for the lattice gas (1) may be written

nb(t+At)=P% (n(t)+ o' O (n**x(s))) (65)
and the lattice Boltzmann equation (11) may be written
Nt +At)=P° (N(t)+ QI O(N*X(z))) . (66)

We denote the ensemble mean of an arbitrary product
of the n®s by

N"‘=<H n“>, aC®B .

a€a

Henceforth, we use the greek letters ,3, ... to denote
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subsets of the set B and the letters u,v, . . . to denote sub-
sets of B. We shall sometimes use a latin index to denote
an index set with a single element, as in N°=N le}  Addi-
tionally, for quantities subscripted or superscripted by a
single set, we shall sometimes replace the set by its ele-
ments, as in N%¢=N{%5¢} Ag a final point of notation,
an index set with a circumflex is assumed to have at least
two elements, i.e., |&] > 2.

Finally, we generalize the propagation operator 7 to be
a permutation matrix P’ acting on the 2N.dimensional
space of subsets of B. For a fixed set of bits
B={by,...,b,} CB, if we take a={ay,...,a,} to be
the set of particles whic}}( f) goes to under propagation,

ie.,a;=ali(b;),x(b;)+c /), then

, 1, a'=a
= o, a'#a.
Thus, for example, 7%, is 1 when a =a(i(b),x(b)+c ®)
and O otherwise, in agreement with the previous notation.

B. Representations of correlations

An ensemble is generally defined to be a distribution on
the space of possible configurations of the entire lattice-
gas system. In this subsection, we discuss several alterna-
tive descriptions of the probability distribution describing
an ensemble.

Given a set S of  Boolean variables
S={n Un? ..., 0% }, a probability distribution on S can
be described in several equivalent ways. The most famil-
iar description is given by assigning a probability to each
possible set of values for the n®s, i.e.,, given any set
aC{l1,2,...,N}, we define the probability that the cor-
responding set of »’s is equal to 1 and the rest are O to be

“=[probability that (n Tn2 ..,nM)

=(x*1),x%2), ..., x*(N)N],

where

o 1, i€a
XD=1 iga.

Since there are 2" such subsets a and since

S Pe=1
a

is the only constraint, the space of probability distribu-
tions on these N variables is (2¥Y—1) dimensional. [In
fact, it is a (2¥—1)-dimensional simplex.]

An equivalent description of a probability distribution
on S can be given by defining the means N for each pos-
sible product of elements of S. [Note that (n?)?>=n? so
that the mean of any product of elements of S is equal to
N for some a.]

In terms of the P®s, the means can be expressed as

Ne=Y PB . (67)

B2«

This relationship can be inverted to get

Pi=3 (_l)lﬂl—lalNﬁ . (68)

B2a

The space of allowed values for the means is also 2¥—1
dimensional since N°=1. These two descriptions of a
distribution are equivalent in the sense that the informa-
tion contained in either description is exactly sufficient to
completely specify the distribution. In fact, Egs. (67) and
(68) show that the probabilities and the multipoint means
are related by a linear transformation.

Probability distributions in which the n¢ are distribut-
ed independently have means given by

Ne=T]I N°.
a€a
The space of independent distributions on N variables is
clearly N dimensional and is parametrized by N¢,
a€{l,2,...,N}. The Fermi-Dirac equilibrium (18) is
an example of an independent distribution.

A third description of a distribution on S can be given
in terms of connected correlation functions (CCF’s) [33].
An expansion in CCF’s is often referred to as a cluster ex-
pansion. For each aC{1,2,...,N}, there is a CCF,
which we denote by I'*. It is easiest to define the CCF’s
implicitly by expressing the means in terms of the CCF’s
through the equation

Ne=f«r*)=_ 3 T9r%...1%, (69)
tem(a)
where 7(a) is the set of all partitions of a into disjoint
subsets &y, . . ., &,. Explicitly,

N°=T*
Nab= rab+ Farb
Nabc= Fabc+ rarbc+ rbrac+ Fcrab+ ral-\br\c

We shall refer to N¢ (I'*) as an n-mean (n-CCF), when
|a| =n. The above set of equations can be inverted by in-
duction on n to get a functional relationship of the form

r*=g*N*), (70
where g and f are inverses. Explicitly, we have

r*=nN¢,

[eb=Nab_ Nanb

[abe= pabe _ yapbe_ rbprac_ neaby g Nanbye

Again, the description of a probability distribution in
terms of CCF’s is completely equivalent to the descrip-
tions in terms of N®s and P®s. There are 2¥—1 in-
dependent I'®s, as I'? is not defined. Note that the rela-
tionship between the I'’s and the N%®s (or the P%s) is
nonlinear.

The main reason that CCF’s will be a useful descrip-
tion for us is that in a Gibbsian equilibrium all n-CCF’s
are 0, for n > 1. Thus the distance of a distribution from
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one that is independent is measured by the quantities re
(recall that an index set with a circumflex is constrained
to have more than one element). In the subsequent
analysis, we shall find both the N and I'* notations to be
useful and we shall use the functions f and g to move be-
tween the two descriptions.

C. Exact dynamics

We now proceed to rewrite the exact dynamical equa-
tion for the lattice gas (65) in a form similar to that of the
lattice Boltzmann equation. For most of this section we
shall assume that the collision operator respects the con-
servation laws exactly and obeys semidetailed balance, so
that o'= o0} and 0! =w}=0; in Sec. VIH we shall discuss
the effect of correlations when we include nonzero o} and
).

Recall that the collision operator in the lattice
Boltzmann equation (66) can be linearized, as in Eq. (29),
to give

No(t+At)=Pb (N(t)+eJ O N{XN () . (7))

In order to describe the macroscopic behavior of the sys-
tem we need only include the effect of the collision opera-
tor Q) up to the order € term associated with the Jacobi-
an since, as we have seen in Sec. III, the higher-order
terms associated with the collision operator have no
effect upon the hydrodynamic equations of the system.
In fact, the hydrodynamic equations derived in Sec. III,
and the associated advective and diffusive transport
coefficients, depend upon only the Jacobian matrix J ij,
through its eigenvalues and eigenvectors. What we now
wish to show is that if we drop the Boltzmann molecular
chaos assumption and analyze the exact ensemble-
averaged equation of motion for a lattice gas in the scal-
ing limit, we get an equation identical in form to Eq. (71),
but with a renormalized J matrix. The exact transport
coefficients can then be expressed in terms of the eigen-
values and eigenvectors of the renormalized J matrix us-
ing precisely the same expressions as in the Boltzmann
analysis. Furthermore, we find that for a large class of
lattice gases, the eigenvectors of the renormalized J ma-
trix are unchanged; only the eigenvalues of the matrix
undergo renormalization due to correlations.

We begin with the exact time-development equation
(65). By taking the ensemble average of the product of
this equation over all @ in an arbitrary set a C B, we can
write the exact equation for an arbitrary multipoint mean
at time ¢ + At in terms of multipoint means at time ¢. We
have

N%(t+At)
=<H n“(t+At)>

aEa

-5 ?aﬁ(n [n”(t)+wi(b)(n*(x(b),t))]> .m
B beB

To express the right-hand side in terms of multipoint
means, it will be convenient to rewrite this equation in a
more compact notation. For a set BC B, let us define Lg
to be the subset of points in L that contain at least one

particle in the set 3, that is,
Lz={yEL: x(b)=y for some b EB} .

Similarly, we define 3, to be the set of i’s corresponding
to the particles in 3 at the point x, that is,

B.={iE€EB: ali,x)EP]} .

We can now factorize the product appearing on the
right-hand side of Eq. (72) into contributions from each
of the points in L by writing

II [7%)+ o' @(n*(x(b),2))]
bER

=11 II [n(x,0)+e'(n*(x,t)].

xELB iEBX

The innermost product on the right now depends only on
quantities at a single site x.

The functions w'(n*) can be expressed as polynomials
in the n”s of the form

o'(n*)=3 k', [I n’,
vCB JjEv

where the k’, are coefficients that may depend only on
random bits at each lattice site and are constant for
deterministic lattice gases. Thus we can write

II [ +o'(n*)]=v*, [ n/,

ieu jEV
where the quantities v#, may contain random bits at each

site. Taking the ensemble average over any such random
bits, we get the mean vertex coefficients V¥,

e, =(vh,) . (73)

The state transition probabilities 4 (s —s') may be in-
terpreted as elements of a collision matrix on the space of
probabilities P° in the sense that the postcollision proba-
bility of a state s’ is given by

S A(s—s )P’ (74)

Similarly, the matrix V*, can be interpreted as a collision
matrix on the space of means. Using Egs. (67), (68), and
(74), the matrix V can be related to A4 through the equa-
tion

V'uv: 2 2 (_1)|V|_‘-‘|A(s_>s’) ’ (75)

s'DusCwv

where we have identified the state s with the set of bits
that are 1 in that state (s CB). Referring back to the ex-
ample calculation of Sec. V, observe that the coefficients
in Eq. (63) are precisely the mean vertex coefficients for
the 1D3P lattice gas. Clearly, the 22" matrix elements
V#  depend only on the sets u and v and on the form of
the collision operator. In particular, they do not depend
on x or on the values of the n%s. Note that V®V=8®v, re-
gardless of the specific lattice gas or collision rule.
Equation (72) can now be rewritten in the form

Nt +At)=P*K" N"(1), (76)
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where K is an operator expressing the complete collision
part of the time development, given by

KP= 11 V>, . (77)
xELﬂ *

We now transform the exact equation of motion (76) into
an equation of motion for the CCF’s. Using the functions
f and g from Eqgs. (69) and (70) to convert from means to
CCPF’s and back, Eq. (76) can be rewritten as

Tt +At)=g*(P*sKP f1(I'*)) .

However, note that from the definitions of f and g, a per-
mutation on the bit labels can be performed before or
after calculating means from CCF’s or vice versa,
without changing the result. Thus g and A commute
and this equation can be rewritten as

%t +At)=P*dAT*) (78)
where
PAT*)=gP(K* f1(T*)) .

Since we have chosen to expand around a Gibbsian
equilibrium, all of the quantities I'? are of order € (recall
|&| >2). To perform a complete analysis of the system in
the scaling limit, we need only keep terms of first order in
€ in these quantities and hence in the expression ®P(I'*).
This is essentially because the conservation equation (13)
is linear and is unchanged by the inclusion of correla-
tions; the effect of correlations appears only at order € in
Eq. (12). [The ordering of I'? at O(e) will be assumed
throughout this paper. Of course, there will be O(e?)
contributions as well. These terms are irrelevant in the
scaling limit unless there is a divergence in their
coefficients. We know of no lattice gases that have such a
divergence at O(€?) that do not already diverge at O(e).]
We can linearize Eq. (78) in an analogous fashion to the
linearization of the Boltzmann equation in Eq. (71) to get

Dt +A) =P eHP N () +#HP TT(1)] (79)
where
B B T
ar? |o aN° |, "arv |,

Similarly, when we include the effects of correlations to
order € in Eq. (78) for a={a}, the dynamical equation
for N°=T"“ becomes

Ne(t+At)=P [N°(t)+e[H° —8° IN{() +H, T T (1)} .
(81)

Note that if we set [¥=0 in this equation, we get back
the linearized Boltzmann equation (71) since

j{bc —Sbc :SX(b)x(c)Ji(b)i(c) . (82)

Inserting Eq. (79) repeatedly into Eq. (81), we can now
write an expression for the mean occupation number of a
certain bit of the system at position x and time z+At¢,

written as an infinite sum of terms, each of which is a
function of the quantities N, and N, at nearby lattice
sites x’ and at previous time steps ¢’. As we consider
terms in this series with more and more factors of P%#,
the positions and times at which these quantities are eval-
uated will differ from x and ¢ by greater amounts. How-
ever, for any given term in the series, the means
N§“x)(¢') and N$*)(¢') can be replaced by N&"®(¢)
and N{'“®(¢) and the expression (84) will only change by
a quantity of order ¢, since spatial derivatives are ordered
as € and temporal derivatives are ordered as €. Such a
modification for a finite number of terms does not change
the behavior of the system in the hydrodynamic limit. In
fact, it follows that whenever the sum of terms in Eq. (84)
converges on a scale that goes to zero in the hydro-
dynamic limit, we can drop all the spatial and temporal
variations in the single-particle means. The resulting ex-
act equation of motion for the quantities N¢ is

Net+At)=P% [N%t)+ef®.N§(2)], (83)
where
41)0 = SX(b)x(c)Ji(b)i(c)
+HO [ PEHP, +PEFP(PTHE, + - )]+ 0(e)
(84)

where all #’s in & are evaluated at the point x and the
time ¢. Similarly, removing the spatial dependence of c,
Eq. (83) can be rewritten in precisely the form of Eq. (71),
where J is replaced by the renormalized matrix

Tix)y=3 #°0x, +0(e) . (85)
yEL

It is important to note that the above argument breaks
down when the sum (84) is divergent. It is a well-known
result of continuum kinetic theory [18] that velocity auto-
correlation functions of fluid systems (conserved mass
and momentum) decay with time as ¢z ~ 272, while those of
diffusive systems (conserved mass only) decay as ¢ ~ 1~ P72,
Since transport coefficients are given by the time integral
of the velocity autocorrelation function, it follows that
diffusivity converges for all D >1, but that viscosity
diverges logarithmically for D=2. Likewise for lattice
gases, when the time series of correlations converges
sufficiently rapidly, all zeroth-order means appearing in
Eq. (84) can be evaluated at the same point in space and
time because the terms that dominate this series involve
quantities from a region of space and time that goes to
zero in the scaling limit. This is the case for diffusive lat-
tice gases for D =1 and for fluid lattice gases for D > 3.
Thus we expect that our 1D3P, 2D4P, and Burgers equa-
tion examples will have no convergence problems since
they are all diffusive lattice gases in one or two dimen-
sions, and this expectation is borne out by explicit calcu-
lations of the diagrammatic sums.

The FHP model, on the other hand, is a two-
dimensional fluid and so its time series of correlations
diverges logarithmically with the size of the system. The
form of this logarithmic divergence can also be derived
directly from the diagrammatic sums. One might expect
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this divergence to mean that the sum (84) is nonlocal and
gives rise to an integral equation in the continuum limit,
but there is a simplification for incompressible fluids (or
for any system for which the conserved quantities are or-
dered as in Sec. IIT H) because the zeroth-order equilibri-
um is spatially invariant. In this case, the zeroth-order
means can simply be replaced by their universal values in
spite of the logarithmic divergence. For a compressible
fluid, on the other hand, the effects of large scale varia-
tions in the N°»*”s must be considered and the full equa-
tion of motion might well be integro-differential in char-
acter. In general, for lattice gases where the sum (84) is
divergent, one must be quite careful about the analysis.

Now that we have rewritten the exact dynamical equa-
tion in a form commensurate with the original form of
the lattice Boltzmann equation, the renormalized trans-
port coefficients for the theory can be related to the ei-
genvalues of the matrix J' ; in the same way that the orig-
inal (Boltzmann) transport coefficients were related to the
eigenvalues of the matrix J* ;- Thus, if we can compute
the matrix J'; exactly, we can also compute the exact re-
normalized transport coefficients. Most of the rest of this
paper is devoted to methods of calculating and approxi-
mating the matrix J'; and applications to specific lattice
gases.

D. Factorization of the collision operator

In the next two subsections we shall show that expres-
sion (84) for &# can be written in a diagrammatic notation,
allowing us to perform a perturbative calculation of & by
summing over ‘“Feynman diagram”-like objects, where
the contribution from each diagram is just the product of
factors associated with its vertices. The principal obser-
vation that allows this reduction is that the collision
operator (% is factorizable. We devote this subsection
to demonstrating the exact form of this factorization.

Theorem 2. For fixed a and B, #“ can be broken
down into a product of contributions from distinct ver-
tices. Explicitly,

Wag"_‘ H ‘VaxBx , (86)

xEL,

where the correlation vertex coefficients (CVC’s) V are
defined by

Vi =3 (1)

v i€(a, \u)

I Ng,‘

X

I N ] ve (87)

JEGABY

with the sum taken over pCa, and v2p3,, vCB.

Proof. To prove the theorem, we need only compute
the derivatives of the means and CCF’s with respect to
one another, evaluated at the equilibrium point. From
the definitions (69) and (70), it is clear that when BZa,
dg*/dNP=3f*/3IF=0. When BCa, it is also fairly
straightforward to compute from Eq. (69)

of

0P Ni“=T1I TII N§. (88)

xEL, i€(a\By)

= 1I

0 a€(ar\p)

Similarly, when BC a, the derivatives 9g*/dN?” are given
by

a

ag

E‘J‘V—ﬁ (—Ny) . (89)

0 (-N§=T1 I

0 a€a\pB xEL, i€a,\B,

Substituting Egs. (77), (88), and (89) into Eq. (80), we get

Hp= 2 | II 1T 1 v,

yCa,fDB [xEL, i€(a,\v,) xELy

(=Ng)

X

I II Wb

XEL, JE(LN\BY)

Since y Ca, clearly L, CL,. The fact that V®,,=O when
v#0 implies that all terms with L,Z L, vanish, so we
can restrict the sum over { to only those § with L, CL,.

In this case for x&L,, clearly 146 .= ¥2,=1 or
V7x§x=0, and for x& L, clearly £,\B, =, so we can re-
place all the products with products over x€ L ,, giving

=3 11 11

v, 6 XxEL, i€(a\7,)

(—=NyV™  II Ny, (90

*ie(E B,y

where the sum is over all yCa and all { satisfying
L.CL, and {DB. For each x, however, this means that
v and &, are summed over all ¥,Ca, and §,D,. Since
the y, and &, are independent for different x, a distribu-
tive rule can be applied to Eq. (90), giving #/“g in exactly
the form stated in Theorem 2, so the proof is complete.

u

E. Diagrammatics

Using the result from the preceding subsection, it is
possible to express every term in & in diagrammatic
form. A generic term in &9 is of the form
k k k—1 2 1
e ﬁk?ﬂ ak—lj{a ﬁk-l"'?ﬁalﬁaﬁl (91)

with o and B fixed (i.e., not summed over) and
Iolzil, |Bi| > 2, except for the end points where a*={a} and
B ={b}.

Wt{a d}eﬁne a diagram T by an integer k(T), which we
refer to as the length of the diagram T, and a function
ar(r), where for each 7€{0,...,k}, arp(r)CB.
Geometrically, we associate each a € a,(7) with a virtual
particle (VP) moving from (x(a),7) to (x(a)+c @, 7+1)
on the lattice Ay ;=L X{0,...,k+1}. We refer to
a7(7) as the set of outgoing VP’s for the diagram T.

It is natural to define a corresponding set of incoming
VP’'s for >0 by Br(r)={b:ali(b),x(b)—c'?)
Earp(r—1)}. We also define o4(7)=|a(7)| to be the
total number of outgoing VP’s for each value of 7. Final-
ly, given a diagram T, we can define a weight function
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ap(r),
Br(n),

wirn=11 II V¥

XxEL1=7=k(T)

by taking the product of YV over all vertices.

The term (91) can now be represented by the diagram
T with a;(7)=a", where for consistency o is defined to
be the unique set with ‘Pﬁla(): 1. When 70, ‘Pﬁfﬂa,: 1,

so Br(7)=p" for all 7. It follows that the contribution

from the term (91) is exactly given by W(T). Thus we
can rewrite expression (84) for &% as a sum over dia-
grams

=3 3 W, (92)
k=1reTe, (k)

where in general we define the set of diagrams T°g(k) by

T k)={T: k=k(T), or(D)>1for 1=1<k, ar(k)=a, Br(1)=PB} .

Note that C\/Q‘,———ng, so any diagram with incoming VP’s at (x,¢) but no outgoing VP’s has weight zero. For many
lattice gases certain other vertex factors V¥ also vanish; diagrams with such vertices can be dropped from the sum (92).
From Eq. (85), J can now be written as a sum over diagrams in the same fashion as &,

ifj(x)=§ s W,

k=lreT (xk)
where the set of diagrams to be summed over is given by

i — a(i,x)
Tixk)=, 1) TO¥,0) .

(93)

We shall find it useful later to generalize this set of diagrams to the sets of diagrams

T (x,k)={T: k=k(T), o(I)>1for 1<I<k, ILaT(0)|=1, Lo ={x}, plar(k)=p, plar(0)=v],

where we have used the notation

plfay, ... a;})=lilay),...,i(a;)} .

Example. As a simple example of the diagrammatic
notation, consider the allowed diagrams for the 1D3P lat-
tice gas considered in Sec. IV A. The complete set of di-
agrams needed to compute the k =3 correction to J %, is
the set of diagrams T — T, represented in Fig. 4, along
with the diagrams achieved by reflecting 7| and T,
across the x axis. The weight of diagram T,, for exam-
ple, is W(T,)=v" v _9v%v*, Note that this dia-
gram corresponds precisely to the term computed in the
example of Sec. V. The coefficients
—p,pf,1—2pf,—pf+pf? computed in that calculation
are precisely the CVC’s in W(T,). We shall compute the
remaining vertex factors V¥, for this lattice gas in Sec.
VII A and we shall see that the contribution from dia-
gram Ty in fact vanishes.

F. Approximations

We have so far managed to write the exact formula for
the hydrodynamic equations in the scaling limit only in
terms of an infinite formal series. The natural next ques-
tion to confront is whether this series can be summed.
We would like to know whether the series is finite, and if
we cannot sum the full series, at least we would like to
find a set of reasonable approximations that we can make
to truncate the series to one that is summable. The ques-
tions of convergence are rather difficult and we shall not
address them here in full generality; in general, the con-

f

vergence properties of the series depend on the form of
the conserved quantities in the system. A variety of
methods for performing partial sums of infinite series of
diagrams while retaining physically important terms has
been applied to related problems in quantum field theory
and quantum many-body theory [34,35]. We shall de-
scribe here several particular approximation methods
that are useful for the kind of series that arises for known
lattice gases.

1. Short-t and small-l truncations

The simplest useful approximations involve truncating
the sum (92) to a finite number of terms by putting an
upper bound on either the number of time steps or the
number of distinct nontrivial vertices allowed in each dia-
gram. In the first case, the expression for the renormal-
ized J matrix is

.T‘T’ij(x)= > > w(Tn),
k=1reT (xk)

where the diagrams summed over are the same as those
summed in Eq. (93). Since for each fixed value of k there
is a finite number of allowed diagrams, this sum is finite.
We refer to this approximation as the short-T approxima-
tion.

It is important to distinguish the short-r approxima-
tion from the transient effects encountered when a lattice
gas is first started from random initial conditions. In the
short-7 approximation, we still assume that the lattice gas
has run for a sufficiently long time that the higher corre-
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T =1
T=2
T=3

lations have had a chance to develop from the random in-
itial conditions in which they are artificially suppressed.
The point of the short-7 approximation is to additionally
assume that, in this asymptotic state, the dominant con-
tributions come from diagrams with short temporal ex-
tension. This is very different from the goal of describing
the transient startup of the lattice gas. In fact, the for-
malism used here can easily be extended to describe the
dynamics of correlations in the transient period [36]. In
this paper, however, we concentrate on asymptotic prop-
erties of lattice-gas dynamics, such as the transport
coefficients, and, for certain lattice-gas models, the
short-7 approximation is useful to this end.

In the second case, we allow k to be arbitrary, but al-
low only diagrams where the total number of vertices
(x,k’) with nonempty outgoing sets a;(k'), is less than
or equal to some fixed number /. We denote the sum re-
stricted to these diagrams by J '}, Again, there is only a
finite number of such diagrams in this sum, which means
that this sum must also be finite. This approximation is
analogous to the weak-coupling expansions in quantum
field theory, although in this case the coupling constants
V¥, are usually not particularly small. The short-r and
small-/ truncations give good consecutive approximations
for many lattice gases. In either of these two approxima-
tions, the Boltzmann approximation can be recovered, by
taking r=1or/=1.

2. BBGKY truncations

Another good class of approximations, in which a re-
duced but still infinite set of diagrams is summed, corre-
sponds to truncations of the BBGKY hierarchy of equa-
tions. Such an approximation involves neglecting g-
CCPF’s with g >n for some fixed value of n. In our di-
agrammatic formalism, this amounts to restricting the
sum to diagrams with o(k')=<n for 1 =k’=<k. For ex-
ample, with n =2, diagram T’y of Fig. 4 would be neglect-
ed. Whereas the computational complexity of including
all diagrams in the complete sum grows exponentially in
k, that of the truncated BBGKY approximations grows
polynomially, so the latter are computationally more
tractable.

3. Ring approximation

The n=2 version of the BBGKY approximation is
closely related to the ring approximation. The ring ap-
proximation is made by neglecting interactions between
two propagating correlated quantities except at the initial
and final vertices of a diagram. It is generally possible to

{Tl KTQ T Ty site.

FIG. 4. k=3 diagrams for a
1D lattice gas with three bits per

calculate a closed-form expression for the infinite sum of
diagrams corresponding to this approximation. Further-
more, it is usually fairly easy to calculate the asymptotic
form of this approximation as k— o. This calculation
often captures the most significant part of the long-term
renormalization effects. In particular, for certain lattice
gases that model two-dimensional fluid systems, the ring
approximation diverges logarithmically in |L|, which is
in agreement with predictions from other theoretical
frameworks [23] and also with observed behavior [37].

In Sec. VIII we shall apply the different approximation
methods described here to the 1D3P lattice gas and com-
pare the results from these approximations with comput-
er experimental results.

G. Eigenvalue renormalization

Within the framework of the formalism developed in
the previous subsections, we can now demonstrate that
for a large class of lattice gas models, the effects of corre-
lations are to renormalize only the eigenvalues of the J
matrix and not to change the eigenvectors. This result
follows from a pair of fairly simple theorems.

Theorem 3. The finite matrix C'™\=J " —J! of
corrections to the J matrix can be restricted to be a ma-
trix in the space of kinetic eigenvectors of J, i.e., if vE H,
then

viF(DIi i N—(F ()i __ i j —

Proof. From Eqgs. (84) and (86), it will clearly suffice to
show that qi"\/“ﬂ=‘\/ﬂjq{, =0 for every  C B with |@| > 2.

We first demonstrate this sufficient condition for the
right hydrodynamic eigenvectors qi,. We showed in Sec.
ITI1E that ¢’ was a right eigenvector of the J matrix with
eigenvalue O by differentiating the identity Q(N%)=0,
which holds for any equilibrium, with respect to the pa-
rameters a, of the equilibrium. We can similarly show
that g/ is a null right eigenvector of V#; by using the sta-
bility of the Boltzmann equilibria. The stability of the lo-
cal Boltzmann equilibrium tells us that at each lattice
site,

S v*, II Ny |=0.

pPCB i€p

gh

Differentiating this equation with respect to the parame-
ter a,, of the local Boltzmann equilibrium gives
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0= 23 IT —N|V5 |3 | II Néla
ECP.PCB |jEnNE i€p |kep\i
=cyiliqi’ ,
as desired.

Next, consider the left hydrodynamic eigenvector g;.
From Eq. (87), we have

Vvi=3 | II ¥}
voR JEW\R
Since g’N'is a conserved quantity for any value of N¢, we

have

:quN{)

IT V4

JER

VZ Vly

rCB

for arbitrary N, so ¢V’ —q,"‘\f"ﬂ=0 for all iC B with
] > 2. [ ]

Theorem 4. If there exists a symmetry = of a lattice
gas that can be expressed as a combination of a permuta-
tion * y on the lattice L fixing a point x and an indepen-
dent permutatlon b3 ’] on the bit set B, where the zeroth-
order Boltzmann  equilibrium at x  satisfies
S N{(x)=N{(x), then = commutes with J and J 7, i.e.,

LI () =T ()2 =2 T ) (x)— JML(x)Z =0

Proof. The condition that X is a symmetry of the lat-
tice gas w1th the glven product structure asserts that

4= 12 ¥y is a permutation matrix on all the
bits of the system, whlch can be extended to a permuta-
tion matrix 2% on subsets of B, satisfying

2_1)“B7’ﬂy278=?“8
and

(Z71)%KP 27 =K%
Since by their definitions the functions f and g connect-
ing means and CCF’s are invariant under permutations,

it follows from Eq. (80) and the invariance of the local
Boltzmann equilibrium at x that

ST HE ST =H

where we assume that all zeroth-order single-particle
means are evaluated at x, as in the diagrammatic expan-
sion. It then follows from Egs. (82), (84), and the fact
that 8“g commutes with = that

(X Ha,#b,3¢, =%,
and
(I ()T =T (x),

proving the first part of the theorem. From the con-
straint that = leave the point x fixed, we have

i ,
JH(x)=3 4””‘)a(1,w)
w

zz (E -1 )xy(z -1 )ijda(j’y)a(k,z)i klz zw
w

— S —1yi za(j,x) 5k
2 (= )]& ! a(k,z)2 !
z

:(f _l)ijjjk(x)i kI N

so the second assertion of the theorem is proven. W
Corollary 1. If the kinetic eigenvalues of J converge

as 7— oo, then the sequence {J ” ’-} converges as 7—» o
and Theorems 3 and 4 hold in this 11m1t that is,

g’J =T )=(T " ~J')gi=0 for vEH
and

2T =R T =T 5 =0
for £7;, as in Theorem 4.
Note that if the sequence {J "} does not converge, then
neither do the kinetic eigenvalues, and the theory breaks
down in the continuum limit.

For a wide class of lattice gases, including all the lat-
tice gases described in Sec. IV A, these two theorems
suffice to demonstrate that the eigenvectors of the J ma-
trix coincide with those of J, so that the only effect of
correlations is to renormalize the eigenvalues of J. The
essential point is that we can classify the eigenvectors of J
by their transformation properties under the group of
symmetries of the lattice gas. Theorem 4 asserts that J
can only mix eigenvectors with identical symmetry prop-
erties. Thus, if no two kinetic eigenvectors of J share the
same symmetry properties, then J must be diagonal with
respect to the basis of eigenvectors of J. More generally,
if the representation of the group of symmetries on the
space of kinetic eigenvectors of J breaks up into irreduc-
ible representations in such a way that no irreducible rep-
resentation appears more than once, then J is diagonal
with respect to the eigenvectors of J.

As a simple example, consider the 1D3P diffusive lat-
tice gas. The right kinetic eigenvectors of J are

-1 —1

;=53] O, g3=1|+2

+1 —1
Under the symmetry transformation x— —x, +<«>—,
these eigenvectors transform with eigenvalues 32,=—1

and =% =+1. Thus these eigenvectors cannot be mixed
by J and so their eigenvalues are separately renormalized.
Explicitly, in matrix notation, with respect to the basis ¢;,
we have

0 0 O +1 O 0
J=10 j% j%4|, E=l0 -1 o
0 % J% 0 0 +i

By Theorem 4, J commutes with =, so j2,=;3%,=0.

For most standard lattice gases, a similar analysis of
the symmetry properties of the eigenvectors of J shows
that no irreducible representation of the symmetry group
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appears more than once, so that the eigenvalues of J are
renormalized in a straightforward fashion. For those lat-
tice gases where this cannot be shown, it is necessary to
repeat the entire Chapman-Enskog analysis using the re-
normalized J matrix. Note that Theorem 4 implies that
any eigenvectors of J that lie in the same irreducible rep-
resentation of the symmetry group must have identical ei-
genvalues in the matrices J and also in J.

H. Renormalization effects
and higher-order collision: operators

We conclude this section with a discussion of the
effects of the higher-order collision operators ew) and
€’} in the full kinetic theory. We show that the second-
order term only appears in the source term for the hydro-
dynamic equation as in Eq. (40) and does not generate ex-
act renormalization effects. On the other hand, we find
that the first-order collision operator not only appears in
the advection coefficient as in Eq. (38), but generates a set
of additional correlations that modify the advection
coefficient by effectively renormalizing the components of
the first-order collision operator itself.

We begin by discussing the second-order term €.
This part of the collision operator appears only in the
first-order conservation equation (37). The corrections to
this term due to correlations are of one higher order in €
and can clearly be neglected in the entire analysis. Thus
inclusion of this term only generates the source term in
Eq. (37) in the manner described in Sec. IIIG.

Now we consider the effects of including a first-order
term €w) in the collision operator. Recall that this term
is restricted to obey the conservation laws, but is not re-
quired to satisfy semidetailed balance. Because this part
of the collision operator obeys the conservation laws it
does not appear directly in the first-order conservation
equation. It does appear in the linearized Boltzmann
equation (29), but its corrections due to correlations are
again of higher order in €.

At this point, one might imagine that inclusion of the
first-order term in the collision operator does not necessi-
tate any further modification to the exact hydrodynamic
equation in the scaling limit other than the effects de-
scribed in Sec. III. However, this is not the case. In fact,
the inclusion of this term in the collision operator has a
nontrivial effect on Eq. (79), which describes the propaga-
tion of correlated quantities in the system.

Equation (79) gives an expression to order € for I'? at
time ¢ + At in terms of quantities at time ¢. In the deriva-
tion of Eq. (79), we used the fact that the zeroth-order
means N describe a local Boltzmann equilibrium that
does not generate correlations through the collision
operator o). When we include the first-order collision
operator '), we must include the fact that ew’(N§ ) need
not vanish. Thus the correct form of Eq. (79) in this case
is

2

Lt + M) =Pl eHP N4 (1) + 9P T7(1)+eIP] , (94)

where we have defined I°=0 whenever |L ﬁ| >1and

Iﬁ:juzz II N¢

j€es

s o

i€Eu\v

V7
=0

(95)

whenever Lﬁ={y} and ﬁy=u(.§)=y for some yEL; all
means N, in this equation are evaluated at the point y.
In Eq. (95) we have used the collision operator on means
V?, defined by using the collision operator o'=w}+ €w’.
However, the CVC’s used in Eq. (94) should still be evalu-
ated with respect to the zeroth-order collision operator
-

Combining Egs. (94) and (81) and including the first-
order collision operator as in Eq. (29), we get

Net+At)=P°[N%t)+ed® N{(t)+eT?],
where
Tb=Q (N (x(b)))
+HO PP+ PO HB (PP IO+ - )]

By applying the same analysis used in Sec. III, we find
that the renormalized hydrodynamic equations for the
theory are of the same form as Eq. (37); however, the in-
clusion of the first-order collision term changes the result
for the renormalized advection coefficient to be
= PO
AHQH )= 3 -—8(1)%?1@ )
At Sk (—AY)

where the renormalized generalized Kronecker & func-
tion and eigenvalues are defined with respect to the re-
normalized J matrix and the renormalized collision
operator €7 is given by

@Y(x)=quja(i,x) .

Just as for the renormalized J matrix, we evaluate all
means N appearing in CVC’s and I'* at the point x. This
simplification depends again upon the convergence of the
infinite series of terms in @7.

We can express the renormalized collision operator in
terms of an infinite diagrammatic sum, analogous to the
sum (93) for the renormalized matrix J. Specifically, we
have

I =i+ 3 N W(T)HI* .

k=1 TE‘T'i(“)ﬂ(x(a),k)

VII. EXAMPLES OF VERTICES
AND RENORMALIZATION

We shall now apply the methods of the preceding sec-
tion to compute the vertex factors for the example lattice
gases described in Sec. IV. We also derive expressions for
the renormalized transport coefficients for all these lattice
gases.
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A. 1D3P lattice gas

1. Vertices

Beginning with either the collision operator Eq. (47) or
the state transition table (see Sec. IV A) for the 1D3P lat-
tice gas, we can calculate the mean vertex coefficients V#,
using Eqgs. (73) and (75). The nonzero mean vertex
coefficients are given by

VEg=V9=1, Vi=p(38;—1),
V=8, Vi=p+8,(1-3p).

Note that since the ensemble-averaged collision operator
is invariant under permutations (relabeling) on the bits,
the mean vertex coefficients also have this symmetry.
Using the equilibrium value f for the mean occupation
numbers N [see Eq. (48)], the expression for the CVC’s,
Eq. (87), reads
V%= X

pCa,v2B

(_1)|a|—|u|f|a|+IVI—|u|—\B!Vuv .

For instance, we have
Vi =fvF v —voQ—vy)

—fAVO VT VOV T )=—pf(1—f) .
The remaining nonzero CVC’s are given by the equations
VB, =V2,=1, V=8 3pf(1—f)—pf(1—f),
V' =pf+8,(1-3pf),
Vi=p(1—f)+8,(1=3p(1—1)), ¥.=83p—p .

(96)

Note that the CVC’s are also symmetric under an arbi-
trary permutation on the particle labels. The nonvanish-
ing correlation vertex factors are depicted graphically in
Fig. 5; only a single vertex is shown in each equivalence
class under the permutation symmetry.

2. Renormalization of diffusivity

As shown in Sec. VI G, the symmetry of the 1D3P lat-
tice gas under spatial inversion is sufficient to ensure that
the effect of correlations is simply to renormalize the
kinetic eigenvalues. From the Chapman-Enskog analysis,
we know that the diffusivity is given in the hydrodynamic
limit by

A= =3pf+9p°f(1 - /) |3

7 s
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» 97)

where X is the eigenvalue of the vector (—1,0,+1) in the

matrix J. In this subsection we shall find the set of dia-

grams that contribute to the renormalization of A.
Factoring out the initial and closure vertices, we can

write the renormalized matrix J as
T =T+ V VY (x) (98)

where

Y”M(x)——— 2 2 w(T) .
k=1 TET,(x,k)

From the fact that Vi =5, =0 for all i € B, we see that
the only nonzero contributions to Eq. (98) can come
from terms of the form ‘V’fY’,Q ‘ij. From the inversion

symmetry, we observe that

Thus, Eq. (98) can be explicitly rewritten as
Ji=J Xt YT X YT

6 PO
6; Y03)+ X%, Y0

0yt oy xif
+X0L Y X 5 Y% -

where

xT =iyl

To evaluate A, we need now only calculate the eigenval-
ues of g7 and g} with respect to the matrices X 'ij for
each pair of values for / and k. Evaluating

gtV =—q}V'.=3p,
Vg ==V gh=3pf(1—f),

A=A+2g2X"" o gd¥ T +2g2X7F | gy T
=—3pf+pfU—f YT —¥*¥.). (99)

Diagrammatically, this equation can be expressed as

(100)

e
3
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V%:l——?pf

Vi = —pf(1- 1) VO = 2pf(1 - f)

Vi =p(l-f)

VB =1

where the notation in large parentheses indicates summa-
tion of the products of all internal vertex factors over all
diagrams with the depicted initial and final
configurations. Together, Eqgs. (97) and (100), with ver-
tices given in Fig. 5, constitute an exact expression for
the diffusivity of the 1D3P lattice gas.

B. The Burgers equation lattice gas

Vertices

From either the collision operator or the state transi-
tion table for this lattice gas (see Sec. IV B) we can calcu-
late the nonzero mean vertex coefficients, which are given
by

Vteg=—a, V™ =1"ga
B ’ + 2 ’
V pg=a

Using the equilibrium value f for the mean occupation
numbers N3, we can calculate the correlation vertex
coefficients. Recall that we calculate the CVC’s using
only the zeroth-order mean occupation numbers. The
CVC’s are given by

CVBB=::V®®=1’ CviB':c\/Bj:O ’
CVi-=l CVQB=CVBQ>:0 .

J 27

V7 = pf

FIG. 5. Vertex factors for the
1D3P lattice gas.

v:: =1-2p(1—f)

In particular, note that all the CVC’s that modify the
number of correlated quantities are zero. Thus, in this
lattice gas, no O(e€) correlations are generated by gra-
dients in N; and correlations cannot affect the hydro-
dynamic equation by influencing the single-particle
means. .

Because of the first-order collision operator ), which
does not satisfy semidetailed balance, correlations might
also be generated by the quantities /2. From Eq. (95),
however, we have

I=0.

Thus we find that for this lattice gas, no correlations are
generated to O (€). Furthermore, even if correlations ex-
isted, they would not couple back to the hydrodynamic
equations since V*;=0. It follows that the standard
Chapman-Enskog analysis gives the correct results for
the transport coefficients. In fact, a stronger version of
this result has been proven using other methods [26].

C. 2D4P lattice gas

1. Vertices

Using the general formulas Eqgs. (75) and (87) to calcu-
late the correlation vertex coefficients Vg for the 2D4P
lattice gas, we arrive at the values for the CVC’s that are
depicted in Fig. 6. In this figure we have only included a
single example of each equivalence class of vertices under
the symmetry group generated by reflections across either
axis. Furthermore, we have only included a single exam-
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ple of each pair of vertices that are related by a 90° rota-
tion. The CVC’s for such vertices are related by ex-
changing the two-particle densities u<>v. For example,
we have

Vi, =1-2v+2,7, (101)

=1 —2p+2u% (102)

2. Renormalization of eigenvalues

Applying the theorems of Sec. VIG to the 2D4P lat-
tice gas, we find that the renormalized J matrix must be
of the form

r4/2 0 —X4/2 0
_ 0 x32 0 —13/2
I= —X4/2 0 X472 0
0 —X3/2 0 x3/2
® . -
1—-2v(1—-v) 2v(l —v)

=
%

v(l —v)(1-2v 2u2(1—u)2

-
F

1-2v 1—-2v

-

Jr

2u(1 — v) + 2u(1 = p) 1-2v(1 = v) = 2u(l — u)

%_

+

—p(1 = p)(1 = 2p) u(1 = ) (1 = 2u)

+

1-2v

-t
+

2u(1 — p) 1—2p(1—p)

The renormalized hydrodynamic equations are

_aﬁz_a_ [f)(v,,u,)—a&
ox

ot Ox ’

v_2 D v)—a—v

ot dy oy |
with

= _ c? 2

D(p,v)= 287 | (=19 1
and

= o c? 2

D(v,p)= 267 | (279 1

In order to calculate the renormalized eigenvalue A * it is

F

—v(1l —v)(1l—=2v)

—2u2(1 — p)?

R

2u(1 = p) —2v(1 = v)

FIG. 6. Vertex factors for the 2D4P lattice gas.

o

—(1 - 24)

+
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only necessary to calculate the component J !; of the re-
normalized J matrix. Because the lattice gas is invariant
under the combination of a 90° rotation and the exchange
w<>v, the eigenvalue X * can be calculated from A * by the
exchange of particle densities.

Using a notation similar to that developed for the

1D3P lattice gas in Sec. VII A 2, we can write the renor-
malized matrix J in the form of Eq. (98). Using the sym-
metry properties of the lattice gas to prove the equality of
quantities Y”; which are related by reflections across

eafh axis, we can simplify the expression for the shift in
X4to

SN =Su(v = )(2v — P [V S Y YT Y 16 - 1) Y fe-vh]

Fovly — )2y — 1) =Y oy ] et - 1)Per - ) [V =YL

Similarly, we have

6X° = Su(n = D)2 — 1)° RS G

F16u(p — )2 — 1) [=Y T+ YT ]+ 1662 (e — 1P (20— ) [V T~ Y]

These equations describe completely the renormaliza-
tion of the hydrodynamic equations due to correlations.
Each term Y“; corresponds to a set of diagrams with a
specific set of outgoing and incoming virtual particles at
the initial and final vertices of the diagram.

A rather dramatic simplification of the eigenvalue re-
normalization equations occurs when the equilibrium
particle densities u and v are equal to 2. When v=1, we
have

s 4 (103)
sxt= v —v7,],
and when = 1 similarly
‘s +
i =Y, - v, (104)

It follows that for these particular values of u and v, the
set of diagrams that give a nonzero contribution to the
renormalization of the eigenvalues is reduced to only
those diagrams that have three outgoing virtual particles
at the initial vertex and three incoming virtual particles
at the final vertex. Thus, for example, the ring and two-
particle BBGKY approximations for this lattice gas van-
ish at the equilibrium described by p=v=1.

In this particular case, the 7=3 short-7 approximation
is given by Egs. (103) and (104), with the first Y term in
each expression vanishing (because it is impossible to
connect the outgoing and incoming particles in two time
steps) and with the second arising from a single diagram
of weight L. It follows that the corrected eigenvalues are
equal to — % in this simple approximation. This leads to
D/D=1=0.777..., which may be compared with the
computer experimental value of D, /D=~0.71 [30].

In a future paper [38], we shall discuss in more detail

= YT 16 (- 1) YT, - Y

&+
* ‘Y‘]

-

—
the results of summing various subsets of diagrams for
this lattice gas and compare the results to computer ex-
perimental data. The ring kinetic theory for this lattice
gas has been worked out [31]; in this reference, a ringlike
approximation is also used to treat noninteracting three-
particle correlations, giving nonzero correction in the
p=v=1 case.

D. FHP-I lattice gas

1. Vertices

Using the general formulas (75) and (87) to calculate
the correlation vertex coefficients V*; for the FHP-I lat-
tice gas results in nearly 300 nonvanishing CVC’s that are
independent in the sense that they are not related by sym-
metries. While it is a straightforward task for a symbolic
algebra computer program to compute and work with
these quantities, it would not be useful to present all the
results in this paper. Instead, Figs. 7, 8, and 9 present
only the initial (one-to-many) vertices, the propagator
(one-to-one) vertices, and the closure (many-to-one) ver-
tices, respectively. These vertices are sufficient to com-
pute all the diagrams in the kinetic ring approximation
and in the 7=3 short-r approximation.

2. Renormalization of eigenvalues

The only transport coefficient of the FHP-I lattice gas
that undergoes renormalization is the shear viscosity v.
From the general arguments in Sec. VI G, we see that the
renormalized eigenvalues A* and A °® must be equal, as
they lie in a single irreducible representation of the sym-
metry group generated by a 60° rotation. In terms of
these renormalized eigenvalues of the J matrix, the renor-
malized shear viscosity ¥ is given by

~=c_2 2 -1
VT 8Ar | (=24 )




542 BRUCE M. BOGHOSIAN AND WASHINGTON TAYLOR 52

——

—J

tra-n2a+ 10

N

1—f(1 - f)? Lra -2 -3y

The renormalized eigenvalue A* can be extracted from
the J matrix by taking the components

Xi=6(T 1 +T 1)) .

As in the previous examples, we can express the eigenval-
ue shift in the form

— » 1 »
BAt=6(X "2, Y7, + XA, Y7, .

By collecting coefficients of terms Y"IO that are related by
symmetry, the expression for the eigenvalue shift reduces

SRV

Lra -7 -3 = N1 =3f)

-f2(1 - f)

Lra-nE-sy) Y- n2a-2p

A.LH.L%,

(= f) Fa-ne-sn  -ta-pa-2n

' FIG. 7. Propagator vertex

factors for the FHP-I lattice gas.

—f(1 = £)?(1 - 2f)

to a sum over more than 100 terms.

We shall not explore the diagrammatic expansion of
the FHP-I lattice gas further in this paper. However, we
have used the general expression for the renormalized
shear viscosity to calculate several simple renormaliza-
tion effects. In particular, one finds that in the ring ap-
proximation, the sum over diagrams diverges logarith-
mically; this result is well known for incompressible fluids
in two dimensions and has been verified using other
methods for the FHP-I lattice gas [23].
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FIG. 8. Initial vertex factors for the FHP-I lattice gas.
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VIII. APPROXIMATIONS
AND NUMERICAL RESULTS
FOR THE 1D3P LATTICE GAS

In this section we discuss in detail the sets of diagrams
for the 1D3P lattice gas that correspond to the various
approximation methods described in Sec. VIG and per-
form the associated partial diagrammatic sums. The goal
of this detailed analysis is to use the simple 1D3P lattice
gas as a test case to study the relative accuracy of the
different approximations and the relative difficulty of
computing these approximations. The results for this lat-
tice gas hopefully give a good indication of what ap-
proaches will lead to useful results for more complicated
lattice gases.

Correlations cause corrections to the Boltzmann
diffusivity of the 1D3P lattice gas that are as large as 5%
for certain values of the particle density f and bounce
probability p. We describe in this section the results of

numerical calculations of the partial diagrammatic sums
corresponding to the various approximation methods and
compare to empirical results from computer simulations
of this lattice gas. In Sec. VIII A we calculate corrections
to the diffusivity in the short-r approximation. By graph-
ing these corrections and comparing to computer experi-
ment, we see that as 7 increases these approximations
give corrections to the Boltzmann approximation that
seem to converge to the observed values. The conver-
gence is slow, however, and since the calculation of these
corrections is computationally quite expensive, it is
difficult to estimate the asymptotic value of the diffusivity
to a high degree of accuracy using these approximations.
In Sec. VIII B we apply the partial BBGKY summation
prescription and again graph the results compared to
computer experimental values. For small values of k, the
k-particle BBGKY diagrammatic summation converges
rapidly, and in most ranges for which we have calculated
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the results, these approximations approach monotonical-
ly the computer experimental values as k increases. In
this subsection we also include a proof that the two-
particle BBGKY approximation converges for arbitrary
values of p,f >0. In Sec. VIIIC we observe that in the
vicinity of the density value f =1, the corrections to the
Boltzmann approximation can be expanded in a power
series in the variable e=1—f. The diagrams that con-
tribute corrections of order " are the diagrams that have
n or fewer vertices where a single virtual particle
branches out to two virtual particles (‘“1-2” vertices).
This expansion in € is roughly equivalent to the familiar
expansion in the continuum theory or in quantum field
theory in terms of the number of loops. Using this ex-
pansion, we can numerically evaluate the successive
derivatives of the correction term at f=1 and compare
these results to computer experiment. The corrections
thus calculated agree exactly with our computer experi-
mental results to within the statistical accuracy of those
results. This calculation has the additional feature that it
is possible to prove that the sum over all diagrams that
contribute to a given order in € converges. This conver-
gence follows from the fact that the sum over all dia-
grams that contain a fixed number of 1-2 vertices is con-
vergent; we prove this for the case of a single 1-2 vertex
using an argument that can be generalized in a straight-
forward fashion. In Sec. VIIID we consider the ring ap-
proximation from an analytic perspective and compare
this approximation to the closely related two-particle
BBGKY approximation. Finally, in Sec. VIIIE we
briefly compare the results of the varied approximation
methods used in this section.

A. Short-T approximation

Consider the corrections to the eigenvalue A in the
Chapman-Enskog analysis of the 1D3P lattice gas arising
from diagrams of fixed length 7. The first few such
corrections are easy to evaluate by hand. For 7=3, the
only diagrams contributing to Eq. (99) are the two dia-
grams T; and T, shown in Fig. 4. These two diagrams
shift the eigenvalue A by

A=K —A=9p2f(1— ) (fp)*—fp(1—2fp)]

=—93 21— f)1—-3fp), (105)

where we denote by A ¥ the eigenvalue of g7 in the 7=3
matrix J ) ;. For 7=4, there are 22 diagrams that con-
tribute to Eq. (99). The 11 diagrams contributing to
YJ: 2 are shown in Fig. 10; the diagrams contributing to
Y™ . can be generated from these by simply changing the
directions of the initial pair of virtual particles. The
correction to A for 7=4 is given by

8k=x(4)_x(3)
=9p*f2(1—f)1—3fp)N4—3Ff—3f%p).  (106)

The complete correction in the =4 short-r approxima-
tion is given by summing the shifts in Egs. (105) and
(106). As 7 increases, the number of diagrams contribut-
ing to 8A increases exponentially and it rapidly becomes

impractical to compute the exact correction, even using
numerical computing techniques, without some means of
simplifying or approximating the calculation. We have
calculated the corrections to A including diagrams up to
7=5. The resulting short-r approximations A (" are plot-
ted against f and compared to computer experiment for
p=+ and 1 in Figs. 11 and 12, respectively. Although
the results of this calculation are a great improvement
over the Boltzmann approximation and clearly appear to
be converging to the computer experimental values as 7
increases, the oscillatory nature of these approximations
(in 7) is an undesirable feature that makes it difficult to
use partial results to put bounds on the actual diffusivity.
Nonetheless, it is clear from the graphs in Figs. 11 and 12
that this formalism includes empirically measurable
effects that are completely dropped in the Boltzmann ap-
proximation.

B. BBGKY approximations

We now consider the partial BBGKY approximations
for the 1D3P lattice gas. As described in Sec. VI, the k-
particle BBGKY approximation is given by summing
over all diagrams that have at most k simultaneously
correlated virtual particles. For each k, the approxima-
tion thus consists of an infinite number of diagrams. This
approximation can be reduced to a finite sum by also lim-
iting the lengths of the diagrams to some maximum size 7
as in the short-7 approximation. Because for fixed k the
computational complexity of the summation of graphs of
length less than or equal to 7 grows polynomially in 7
rather than exponentially as in the short-r approxima-
tion, it is easier to compute the limit of the set of k-
particle diagrams as 7— o than the complete set of dia-
grams in this limit. For k=2, it is possible to prove that
this infinite sum of diagrams must in fact converge; we
derive this result later in this subsection. For k >2, we
do not have a complete proof of convergence; however,
numerical evidence indicates that for each k, the infinite
k-particle BBGKY sum of diagrams is convergent. By
using methods like those used in the following subsection,
it may be possible to prove that for each k, the BBGKY
approximation converges.

We have used a computer to numerically calculate the
limit of the full k-particle BBGKY approximation for
certain values of f and p. The algorithm we used was to
sum all diagrams of length less than or equal to 7 on a lat-
tice of width / and then to take the limits as 7,/ — 0. As
an example, for a characteristic pair of values
(p,f)=(0.25,0.5), we have graphed in Fig. 13 the
corrections due to two-particle BBGKY diagrams of
length less than or equal to 7 on a lattice of size / for all
7<30 and for lattice sizes 2, 3, 4, 8, and 16. The curve
for /=28 is indistinguishable from, and hidden by, the
curve for /=16. Note that all diagrams of length 7 are
correctly summed as long as /=7 for all k; for k=2,
however, many diagrams cancel so that larger values of 7
give correct results, such as for /=2, r=4. It is clear
from this graph not only that the sum over diagrams con-
verges rapidly, but also that the major part of the sum
arises from the contributions of diagrams that are of lim-
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FIG. 10. Diagrams contribut-
ing to the r=4 correction for
the 1D3P lattice gas.

b

ited width. We have numerically approximated the limits
of the k-particle BBGKY sums for kK <5. The results of
this calculation are graphed in Figs. 14 and 15 for the
same ranges of values for p,f that were used for the
short-7 approximations in Figs. 11 and 12.

We conclude this subsection with a proof that the
two-particle BBGKY approximation is convergent. Al-
though this proof is carried out for the particular 1D3P
lattice gas, it generalizes easily to other systems. We be-
gin by considering a matrix M on the space B, of two-
particle subsets of B. The matrix element M iy is defined
by summing over all two-particle diagrams that begin
with outgoing VP’s 2 at an initial vertex and conclude
with incoming VP’s i at a final vertex and that have the
property that all internal vertices have a single incoming
and outgoing VP. In particular, this means that not only
are we restricting to two-particle diagrams, but we are
also selecting that subset of diagrams that have no in-
teraction vertices other than the initial and final points.
Because the internal vertices ‘\/ij describing propagation
of a single correlated quantity are symmetric in i and j
and satisfy the conditions

0=vY'; =1
and

SVi=3 V=1, (107

it is fairly straightforward to see that the matrix elements
of M must satisfy the same constraints. Intuitively, the
above conditions on ‘\/ij can be interpreted as arising
from a description of the propagation of a single correlat-
ed quantity as a discrete random walk, where the direc-
tion of the walk at a given time is dependent on the direc-
tion of the walk at the previous time step, according to
the rule that the (virtual) particle will change direction
with probability g = fp and will continue moving in the
same direction with probability 1—2g. The possible
directions of the walk correspond to the lattice vectors
€p€4. With this interpretation, the matrix element M.
gives the probability that a pair of virtual particles that
begin in state j will collide for the first time in state 7. Be-
cause for g >0 the probability is 1 that two particles be-
ginning at the same lattice site will eventually collide, it
follows that condition (107) must hold for the matrix M.
The remaining conditions on M of symmetry and posi-
tivity follow immediately from the random-walk interpre-
tation.

It is now possible to give a complete description of the
two-particle BBGKY approximation in terms of the ma-
trix M. The two-particle BBGKY correction to the
transport coefficients of any lattice gas can be described
in terms of the correction to the J matrix

8=V, M m v,
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where M is a matrix in the space B, defined by summing
over all two-particle diagrams. This matrix is defined in
a similar fashion to M; however, now we are including di-
agrams that have an_arbitrary number of two-particle in-
teraction vertices ‘\/iy. By considering these two-particle
interactions as another matrix YV in the space B,, we can
write a matrix equation for M in terms of M and V,

M=M+MYM .
Formally, this equation has the solution
M=M(1-YM) ', (108)

0.05

0.8 1

The matrix °V restricted to the space B, is easily seen to
be another positive definite symmetric matrix that
satisfies Eq. (107). It follows that the matrix VM has the
same properties. Unfortunately, this appears to lead to a
difficulty, namely, it is a consequence of Eq. (107) that all
these matrices have an eigenvalue of 1, with associated
eigenvector (1,1,1). This means that the matrix 1—YVM
has a O eigenvalue and thus has no inverse. However, we
are not interested in computing the complete matrix M.
Rather, we are interested in computing the part of that
matrix that contributes to the renormalization of the ei-
genvalue A. The correction to this eigenvalue due to the

0.04

0.03

0.02

0.01

Eigenvalue Shift
o

-0.01

-0.02

-0.03

-0.04

-0.05 . L L

FIG. 12. Short-r approxima-
tion for p=1.
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two-particle BBGKY approximation is given by

SA=9p2f(1—f)M T —M “ ;] . (109)

The quantity in square brackets can be rewritten in ma-
trix form as

¢’Mq,=q* M+MVYM+MVYMYVYM+ -+ )gq, ,

where in the basis (+,0, 2), g2=(—1,0, +1) is the usual
left eigenvector of the J matrix and g, is the correspond-
ing right eigenvector. By the same symmetry arguments
that we used in Sec. VI G to prove that the vectors ¢’ are

25 30

eigenvectors of the renormalized J matrix, it follows that
g? must be an eigenvector of M with some eigenvalue .
Similarly, g2 is an eigenvector of V (considered as a ma-
trix in the space B,). It is straightforward to verify from
the vertex rules that the eigenvalue of ¢ in this matrix is
1—3p+3pf. Thus, due to the fact that g2 is orthogonal
to the eigenvector (1,1,1), we avoid the divergence associ-
ated with the unit eigenvalue of this vector. In terms of
the eigenvalue / it is possible to rewrite Eq. (109) in the
form

pifa—1)l
1—1(1=3p+3pf) ’

SA=9 (110)
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which is manifestly a finite renormalization. We have
thus shown that for the 1D3P lattice gas, the two-particle
BBGKY correction is finite for any p,f. To check this
result, we have numerically estimated the matrix M for
certain values of p,f and verified that Eq. (110) gives a
correction that agrees with the numerical results obtained
from the general BBGKY computer code described
above. As an example, for (p,f)=(0.25,0.5) we get a
matrix M, which is approximately

0.305894 0.293 698 0.400407
M= |0.297612 0.404777 0.297612
0.400407 0.293698 0.305894

The eigenvalue of g2 for this matrix is /= —0.094513.
The estimated two-particle BBGKY correction to the ei-
genvalue A is thus

—_ 9
64— 401

in excellent agreement with the results computed numeri-
cally and graphed in Fig. 13.

A particularly simple example of this formalism arises
in the case g=fp=1. In this case, the random walk in
terms of which M is described is a true random walk,
with the probability at each time step of each of the three
possible directions being exactly 1, independent of the
direction of the previous step. It follows immediately
from a consideration of the matrix M that the eigenvalue
I of ¢ is in this case 0, which implies that the shift to the
diffusivity arising from the two-particle BBGKY approx-
imation is O whenever g=%. Note, however, that the
higher-k BBGKY approximations do not generally van-
ish in this case. For example, in Fig. 15 the two-particle
BBGKY approximation vanishes at the point
(p,f)=(4,2); however, the higher-k approximations do

oA ~ —0.012 550,

not vanish and are closer to the computer experimental
results.

C. Expansion around f =1

In this subsection we consider the renormalization of A
when the particle density f approaches 1. In this regime,
it is possible to expand the eigenvalue A, and thus the
diffusivity, in the quantity e=1—f. By rewriting the
correlation vertex coefficients in terms of €, we can ascer-
tain which diagrams contribute to each order in €. The
CVC’s are shown in terms of € and g=/fp in Fig. 16.
Note that both vertices that take a single incoming virtu-
al particle to two virtual particles (1-2 vertices) are pro-
portional to €. Since these vertices are the only nonzero
vertices that increase the number of virtual particles in a
diagram, it follows that the set of diagrams that contrib-
utes to order £"” must be a subset of the diagrams in the
(n +1)-particle BBGKY approximation. In fact, aside
from the interactions described by the vertices with two
and three virtual particles in both the incoming and out-
going states, the ordering of diagrams in ¢ is equivalent to
the loop ordering of diagrams that is commonly used in
continuum kinetic theory and quantum field theory. Be-
cause the sets of diagrams that contribute to the correc-
tions for low orders in € are fairly simple (but infinite), we
can numerically evaluate these partial diagrammatic
sums to get a prediction for the low-order derivatives of
the diffusivity D around f=1. Because the factor g ap-
pears in the 1-1 vertices ‘V"j, it is convenient to fix this
quantity while evaluating the derivatives of D with
respect to €. The numerical calculation of the low-order
coefficients as a sum over diagrams converges quite rapid-
ly. In fact, it can be shown that for each n, the coefficient
of " gives a convergent sum; we outline a proof of this
fact at the end of this subsection.
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As the simplest example of this type of calculation,
consider the set of diagrams that contribute to order € in
A. Because the correction factor in Eq. (100) is itself pro-
portional to €, the diagrams that contribute linearly in €
cannot contain any internal 1-2 vertices; the contribution
to the eigenvalue from such diagrams is equivalent to the
two-particle BBGKY contribution using the limits of the
2-2 vertices as e—0. Using the results of Sec. VIII B, this
contribution is finite and can be computed just as the
two-particle BBGKY correction is calculated above. As
an example, consider again the case where g =1. In this
case, we expect the derivative of A at f=1 to be 0; this
result seems to be in agreement with computer experi-
ment.

We have numerically calculated the first three deriva-
tives of A at the point f=1 for several values of the pa-
rameter g. The results are completely in agreement with
computer experimental results when 1—f <<1. As an
example, we have graphed the quadratic and cubic ap-
proximations to 8A=A—A for g =0.48 in Fig. 17 and
compared to computer experimental data at the point
f=0.96. For comparison, the curves describing the 7=3
and 4 short-r approximations are also graphed in this re-
gion. Note that the region of the graph with f <0.96
corresponds to p > 1 and is unphysical.

We conclude this subsection with an outline of the
proof that the sum over diagrams contributing to the &"
term in A is convergent for any fixed value of n. This
proof is similar in nature to the proof of convergence for
the two-particle BBGKY approximation in Sec. VIIIB,

FIG. 16. Correlation vertex
coefficients in terms of g, €.

but is slightly more subtle. As mentioned above, to prove
the desired result it will suffice to show that the contribu-
tion from all diagrams with n vertices of the 1-2 type
gives a convergent sum for all values of n. As the sim-
plest example beyond the two-particle BBGKY approxi-
mation, we consider the contribution to the order €2 term
arising from diagrams with a single internal 1-2 vertex.
Using an analogous notation to that used in Sec. VIII B
for the analysis of the two-particle BBGKY approxima-
tion, the contribution from the diagrams with a single
internal 1-2 vertex can be written as

—gp2 _ YA v i

A=9p f(1=fIM T s—M " ;),
where M is given by

ME=[(1-MV) T M* > M7, [(1— VM) 7T,

XVO,MY [(1— VM) |7 (111)

In this equation, the variables x and w are summed over
all distinct elements of the set of pairs of bits at distinct
lattice points, modded out by equivalence under transla-
tion. The elements of this set B, ; are in a one-to-one
correspondence with triplets (n,i,j), with n >0 giving
the distance between the lattice points of the two bits and
i,j denoting the elements of the set B corresponding to
the two bits. The variables y, z, and v are similarly
summed over all elements of the set B, of triplets
(n,i,j) representing a single bit i at a distance n from a
pair of bits jEB,. This set contains elements with n
both positive and negative since the lattice point with a
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single VP can be on either side of the lattice point with
two VP’s; there is a single element of the set B, with
n =0 corresponding to the situation where all three parti-
cles are at the same lattice site. With this constraint on
the summation variables, the matrices M and YV are
defined in an analogous fashion to the two-particle
BBGKY case. For example, the matrix M7, is the matrix
on the space B; , whose entries correspond to the proba-
bility that a set of three particles beginning in state z will
first have a collision when they are in the state y. Similar-
ly, the matrix M ", gives the sum over all two-particle di-
agrams with no (internal) collisions that begin in the state
described by x and end with the collision described by the
state k. The matrix V¥, always describes the product of
correlation vertex coefficients involved in a collision from
a state y to a state x; when both y and x are in B, ,, we
insist that the two particles remain at the same lattice
site. Note that if a collision involves virtual particles at
more than one lattice point, the distances between the
vertices must be commensurate in both states for this ma-
trix element to be nonzero. In Eq. (111), the matrix
inverses of the form (1—x)~! should be taken to be
shorthand for the formal expansion Eixi, as these ma-
trices generally have a unit eigenvalue. Just as in the
BBGKY case, it is straightforward to verify that all ma-
trices considered here that are square (have both indices
taking values in the same space) are symmetric, non-
negative, and satisfy condition (107). Equation (111) can
be sketched diagrammatically as in Fig. 18.

By noting that M and its expression (111) are sym-
metric, an argument identical to that in Sec. VIII B tells
us that the contribution to the eigenvalue A can be de-
scribed by the matrix formula
SA=9 sz(l—f)lz

[1—1(1—=3p+3pf)]?

Xg2{ME V5 M2, (1= VM),V M g ] .
(112)

0.99 1

We have thus reduced the problem of proving that Eq.
(111) is convergent to the problem of proving conver-
gence for Eq. (112). There are several key arguments
necessary to proving the convergence of this remaining
sum. The first step is to prove that any matrix element of
the form

M=, =V, M2 [(1= VM) 97,
is convergent and has an absolute value bounded above
by some number =. The second step is to argue that the
infinite sum

2 M®,

wEB, |

(113)

converges for all 7 and thus can be bounded above by
another number A. Once these two facts are shown, it
follows immediately that the total eigenvalue shift is
bounded above by

PUA=FIE
[1—1(1=3p+3pf)2

We shall now proceed to prove these two necessary
convergence results. We first show that there is an upper
bound E on the matrix elements /1 *,- For a fixed value
of x, the matrix elements ‘V"y form a vector in B, ,,

v v
;7w yl lz 7

(1= MV)~Iar a1 —van—1

I6A] <9

M(1—van~!

FIG. 18. Diagrammatic sketch of Eq. (111).
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which we shall refer to as #,. An examination of the col-
lision rules (96) tells us that ¢ has only eighteen nonzero
components: eight of magnitude —g2e, four of magni-
tude 2gZe, four of magnitude —g(1—2g)e, and two of
magnitude 2g(1—2g)e. We shall now consider the result
s of multiplying this vector by the matrix M

s, =t,M?, .

Because the sum of the components of ¢ is 0, the same
must be true of the vector s. Furthermore, if we define a
norm on ¢ by

lel=3 It 1,

then we can proceed to show that

Is|<|tl[1—gb1—2g)%]. (114)
This result follows because there is always at least one set
of diagrams of order g% 1—2g)? that cancel between the
positive and negative elements of ¢ (in practice, much
cancellation occurs; however, we are interested here only
in the convergence). An example of three diagrams giv-
ing such a cancellation is given in Fig. 19. The vertex
factors from these diagrams are identical; however, the
diagrams connect to components of ¢, with opposite sign.
We do not depict the motion of the extra particle, which
can be assumed to be constant for the three diagrams.
From Eq. (114), it follows that every matrix element of M
is bounded above by

x —___ 24pge
x| <5=—22P8
g%(1—2g)
Thus we have an upper bound of the desired form for the
matrix elements of M.

Finally, it remains to demonstrate that the infinite sum
(113) is bounded above for all #. This sum, however, is
simply equal to the expected value of the number of time
steps necessary for a pair of random walks beginning in
state 7 to collide. To see this, observe that every dia-
gram with weight W(T') containing two noncolliding ran-
dom walks that contributes to M i,ﬁ will contribute to the
sum (113) a total of 7W(T), where 7 is the length of the
diagram; the factor T appears because the diagram can be
chopped in half at any point x and will contribute a fac-
tor of W(T) for each such division. Given this interpre-
tation, however, it is clear that the sum is convergent due
to the standard result that in one dimension a random
walk will return to any point on the lattice in a finite ex-
pected time (this result is usually stated for random walks
without memory; however, a generalization to random
walks with memory and nonzero bounce probability is
straightforward). In conclusion, we have proven both

FIG. 19. Canceling diagrams.

convergence bounds that were needed to demonstrate
conclusively the convergence of the sum over diagrams
that contain a single 1-2 vertex. This implies the conver-
gence of the order €2 term in the diffusivity around f=1.
It is fairly straightforward to generalize these arguments
to the coefficient of an arbitrary order £” by showing that
the sum over diagrams with any fixed number of 1-2 ver-
tices is convergent; however, the details become corre-
spondingly more complex and are left as an exercise to
the reader. Note also that we do not have any reason
other than empirical results to believe that the expansion
of X in € has a nonzero radius of convergence, even
though the coefficients themselves are proven to be finite.

D. Ring approximation

We now consider the ring approximation for the 1D3P
lattice gas. In this subsection we study the ring approxi-
mation from two perspectives. First, we show that the
ring approximation can be formulated in terms of the M
matrix in the same form as the two-particle BBGKY ap-
proximation, where the collision matrix YV is replaced by
a new effective collision matrix. This formalism gives an
analytic relationship between the corrections to A from
the ring approximation and the two-particle BBGKY ap-
proximation. Second, we perform an explicit analysis of
the ring approximation in Fourier space and describe the
complete contribution to the eigenvalue renormalization
from this approximation.

The ring approximation is taken by summing over all
independent paths for two separate virtual particles to
propagate from one point to another, using for each vir-
tual particle the 1-1 CVC’s as weights on the vertices of
the independent paths. The set of diagrams associated
with this approximation is closely related to the two-
particle BBGKY set of diagrams; however, there are two
important differences. The first essential difference is that
because the two VP’s are moving independently, there is
no constraint dictating that the two VP’s cannot move
along the same lattice vector at some time step 7. Thus
diagrams such as Fig. 20 must be included in this approx-
imation. The second essential difference is that even
when the two VP’s enter a vertex from different direc-
tions described by the state 7and leave in different direc-
tions f, the amplitude for such a transition is no longer
given by V but rather by the collision matrix U with ele-
ments

UL=8/[(1—2g)(1—3g)]+g(1—g) .

Despite these differences, it is still possible to formulate
an expression for the ring approximation that is identical
in form to Eq. (109), where the matrix M is no longer
defined by Eq. (108) but rather by

M=M1—-UM)"",

where the matrix U has elements ‘le? giving the total am-
plitude for all processes where a pair of particles 7 come
together at some vertex, perhaps travel together for
several steps, and then separate in directions j at the
same or a later vertex. Algebraically, U is given by
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FIG. 20. Unphysical diagram present in the ring approxima-
tion.

U=U+ST ,

where the matrix Tk;. gives the amplitude for an incom-
ing pair of particles 7 to both move in direction k accord-
ing to the separate V 1-1 vertices and the matrix S/,
gives the total amplitude for a pair of particles both mov-
ing in direction k to eventually separate in directions J.
The matrix T can easily be computed from YV and has
matrix elements

T =8[g(3g—1)]+g(1—2g) .

The matrix S is slightly more complicated. By symmetry,
the elements of this matrix are given by

ST, =8 [s—d]+d

for some values of the functions s(g),d(g). From the
definitions of these functions, one finds that they must
satisfy the recursion relations

s=2g2+(1—2g)%s+2g%d ,
d=2g(1—2g)+(1—2g)%d +g%-+g2d .
These equations have the solution

s=——38  4=3872
3g—4’ 3g—4
Plugging these values for s and d into S and computing

the eigenvalue w of ¢q2 with respect to the resulting ma-
trix U, we find

Y 3g 3g —
J,_\:SJ, 1_. +3 Bt~ S
U= 1% 15y & 3g~—4l
and thus
3g —2
=1—9g—=—-— . 115
w=1-—9g 3¢ —4 (115)

As a result of this analysis, we have an expression simi-
lar to Eq. (110) for the eigenvalue shift

2

saA=92 f(=f) ,
1—lw

where w is given by Eq. (115). We thus have not only

managed to prove that the ring approximation for the

1D3P lattice gas is convergent, but we can also derive

from Egs. (110) and (116) an explicit algebraic relation-

(116)

ship between the eigenvalue renormalization from the
ring approximation and that from the two-particle
BBGKY approximation. If we write the shift in A due to
the ring approximation as § and the shift from the two-
particle BBGKY approximation as &', we have the equa-
tion

8(4—3pf)
8(4—21pf +27p2fH)+9p%f(1—f)(4—3pf)

- b .o
8(1—=3p+3pf)+9p2f(1—f)

As a specific example, we can plug in the explicit value of
&'~ —0.012 550 for (p, f)=(0.25,0.5), to find that

8= —0.012696 .

This result is in excellent correspondence with numerical
calculations.

To derive the correction due to the ring approximation
from first principles, note that the weight of any ring dia-
gram is the product of contributions from each of the two
virtual particles. Denote by y ', (x,?) the factor contribut-
ed by a virtual particle beginning at the origin at 7=0 in
direction k and terminating at x at 7=¢ in direction i. In
terms of these factors, the ring approximation can be
written

YU, (=3 S [phix )y (x,1)

x t=2

+yi(x, )7 (x,1)] . (118)

Because the ring approximation includes only one-point
to one-point vertices, the y‘; (x,t) factors obey the linear,
homogeneous dynamical equation

(e i+ A=V yl (x,1) .

Because this equation is linear and homogeneous, it can
be solved exactly in Fourier space. The result can be ex-
pressed as a Fourier series in x and z. When these results
for y',(x,t) and y’,(x,t), with Fourier summation vari-
ables k and k’, respectively, are inserted into Eq. (118),
the summation over time is nothing more than a
geometric series and one of the Fourier summations
yields a Kronecker 6 in k and k'. The result for
Y!od 4 is then reduced to one summation over k.
Passing to the hydrodynamic limit, this becomes a quad-
rature. For a D-dimensional lattice gas, one obtains at
most a D-dimensional quadrature.

Note that this program can be carried out to compute
the ring approximation for any lattice gas. Since the rela-
tionship (117) between the ring approximation and the
k=2 BBGKY truncation is also generalizable to any lat-
tice gas, it follows that the latter approximation is also
reduced to quadrature.

E. Comparison of approximations

We conclude this section with a brief discussion of the
relative effectiveness of the various methods used to com-
pute partial diagrammatic sums. We have calculated ex-
plicitly in this section the corrections to the diffusivity in



52 CORRELATIONS AND RENORMALIZATION IN LATTICE GASES 553

TABLE I. Comparison of approximation methods for 1D3P—deviation from Boltzmann theory.

Approximation SA

(p,)=(L, 1) (p,f)=01,1) p,f)=(},2%)
Experiment —0.081+0.0045 —0.0111+0.0022 0.0384+0.0099
k=5 —0.0094 -0.0100 0.0414
k=4 —0.0095 —0.0106 0.0417
k=3 —0.0101 —0.0134 0.0402
k=2 —0.0125 —0.0207 0.0441
T=35 —0.0079 —0.0086 0.0380
T=4 —0.0046 —0.0006 0.0305
7=3 —0.0110 —0.0164 0.0319
Ring —0.0127 —0.0216 0.0373
Boltzmann 0 0 0

the 1D3P lattice gas that arise from various methods of
truncating the complete diagrammatic summation. The
short-r approximations seem to converge but require ex-
ponential time to compute so that achieving a high de-
gree of accuracy with this method is difficult. The k-
particle BBGKY approximations can be calculated in po-
lynomial time and seem to converge rapidly for each
value of k. It seems likely that for most other lattice
gases of interest, these approximations will behave simi-
larly and thus that in general the BBGKY approxima-
tions will be the more efficient of these two methods to
achieve a maximal degree of accuracy with a minimum of
computation.

We have also discussed the ring approximation and
shown that the result of this approximation is closely re-
lated to the two-particle BBGKY approximation through
an algebraic relation. Since the ring approximation can
be performed analytically for most lattice gases, at least
in an asymptotic sense, this approximation is generally
useful for indicating the convergence properties of the di-
agrammatic summation for any given lattice gas. In gen-
eral, for lattice gases in two dimensions that preserve
momentum as well as particle number, the ring approxi-
mation diverges logarithmically in the lattice size [37].
This divergence can be reproduced from the diagrammat-
ic formalism directly; this issue will be discussed in more
detail in a future paper [38].

For the 1D3P lattice gas we have studied in this sec-
tion, we found that in the vicinity of the parameter value
f =1, it is possible to expand the sum over diagrams in a
power series in 1— f, giving a perturbation series analo-
gous to the loop expansion in field theory or continuum
kinetic theory. We showed that each term in this expan-
sion corresponds to a convergent sum. In other lattice
gases, similar expansions may be useful in calculating the
effect of renormalization in the vicinity of certain param-
eter values. When expansions of this type are possible,
they are generally more accurate than any of the other
approximation methods. Finally, in Table I, we compare
numerically the results of the different approximation
methods described above to the Boltzmann and computer
experimental calculations of the transport coefficients.

IX. CONCLUSIONS

In this paper, we have presented a complete kinetic
theory of lattice gases, applied it to four model lattice
gases, and compared the predictions of the theory to
computer experiment for one of these models. The ap-
proach presented in this paper opens up a wide range of
possible work on discrete kinetic theory. By applying
these techniques to compute deviations from the
Boltzmann predictions for commonly used lattice gases,
the results of simulations can be more accurately inter-
preted. Lattice gases are currently being used, both in in-
dustrial and academic settings, for computational fluid
dynamics calculations; to ensure the accuracy of these
calculations, it is essential to account for the renormaliza-
tion effects that we have studied here.

In addition to quantitative refinement of lattice-gas cal-
culations, the theory presented here provides a tool with
which to investigate fundamental physical phenomena in
nonequilibrium statistical systems. In recent years, for
example, lattice gases have been used to model many
different hydrodynamic systems, including reaction-
diffusion equations and other systems capable of spon-
taneous self-organization. It is known [9] that the
Boltzmann approximation does not yield accurate results
for the transport coefficients of such systems, unless the
reactants are allowed to diffuse for several steps between
reactions in order to artificially suppress the correlations
that develop [39]. These systems strongly violate semide-
tailed balance, so the methods described in this paper are
not directly applicable; nevertheless, in a recent paper
[40], we have shown how to extend these methods to ac-
curately describe the non-Gibbsian equilibrium of a lat-
tice gas for the Schlogl model chemical reaction. More
generally, these methods will also provide insight into the
extremely subtle flow and agglomeration of interparticle
correlations, entropy, and information [41] in pattern-
forming lattice gases and hence into the dynamical basis
of self-organization.
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